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1 Introduction

We suppose that we are given a set of N observations {yi | i = 1, . . . , N}
which are thought to arise independently from some process of known form
and unknown (vector) parameter θ. However, we may have reason to suspect
that some small fraction of the N observations are in some sense contam-
inated or erroneous, i.e., that they arise from a process different from the
main process. Any such observation is called an “outlier”. We will then be
interested in methods for identifying or at least estimating the number of
the outliers, and for estimating θ in a way which is minimally upset by the
outliers.

Freeman [3] has discussed this problem for general linear models, using
three different models for the outlier-generating (or “error”) process. The re-
sulting analyses of four data sets showed a rather poor ability to find outliers,
and a high sensitivity to some parameters of the prior distribution assumed
for the error process. In particular Freeman remarked on the inability of the
methods he considered to deal with both positive and negative errors.

In this paper, we look at a very simple case, where the main process
is a univariate normal distribution, and apply the minimum-message-length
estimation technique. The analysis suggests some defects inherent in methods
considered by Freeman, and throws some light on their difficulty with bi-
directional errors. The estimators developed here are not unduly difficult to
calculate for large N , unlike those of Freeman, which suffer an exponential
computational complexity.

∗This document was written some time in the 1980s by CSW, Professor of Computer
Science at Monash University. For more on the Minimum Message Length (MML) prin-
ciple, see C.S.Wallace, ‘Statistical and Inductive Inference by Minimum Message Length,’
Springer Verlag, isbn13:978-0387237954, 2005.
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2 Two simple outlier models

The main process, by which the majority of theN observations are generated,
is independent selection from N(µ, σ), with µ and σ unknown. We assume
µ to have a uniform prior in some range of size R, and λ = ln σ to have a
uniform prior in (ln 2ǫ, lnR/3), where ǫ ≪ R is the measurement or recording
error in the data x = {yi}. The prior for λ is the usual “colourless” prior,
bounded below by noting that σ cannot reasonably be supposed to be less
than the measurement error of the data. The upper limit of R/3 on σ is
supposed to reflect the assumption that we have so little prior information
about µ that R is actually the range within which measurements of x can be
made.

Freeman considers three models for the error process, BT due to Box
and Tiao [2], AB due to Abraham and Box [1], and GDF due to Guttman,
Dutter and Freeman [4]. BT assumes outliers are drawn from N(µ, kσ) with
k assumed known. AB assumes outliers are drawn from N(µ + δ, σ) with δ
assumed unknown but constant. GDF assumes outliers are drawn from the
convolution of N(µ, σ) with another distribution of known form. Thus GDF
assumes that an outlier value is obtained by adding to a value from N(µ, σ)
an error drawn from another distribution. The latter distribution may be
regarded as the prior distribution for an additional set of parameters, one
per outlier, which represent the additive errors included in those outliers.
The errors included in different outliers are assured independent.

In all three models, each observation is regarded as having prior proba-
bility α of being an outlier, and (1 − α) of coming from the main process.
Freeman considers α to be known à priori in all cases.

As Freeman observes, model AB is incapable of modelling both positive
and negative contamination of values, since it assumes all outliers have been
corrupted by the same value δ. As we regard this model as applicable to few
real problems, we will not consider it further.

The remaining two models both lead to a model density for the observa-
tions of the form

t(x) = (1− α)N(x | µ, σ) + αQ(x | φ)

where N(x | µ, σ) is the Normal density, and Q(x | φ) is the density produced
by the error process with parameter φ. For model BT, Q is N(x | µ, kσ),
and for GDF, Q is the convolution of N(µ, σ) with some prior density for
additive corruption.

In this paper we address the outlier problem in the above form. That is,
we consider the observations to be drawn from a mixed distribution, and are

2



concerned to estimate the parameters of the mixture.
We will consider two error process distributions.

2.1 Uniform Error Process

In the first, and simpler case, we assume outliers have a uniform distribution
over the same range R as the prior for µ. This model approximates the
situation where, if an observation is in error, it cannot be expected to have
any resemblance to a true (main-process) value. The model is similar to the
GDF model if the error distribution of the GDF models is very much broader
than the main process.

t(x) = (1− α)N(x | µ, σ) + α/R

2.2 Broad Normal Error Process

In the second case, we will adopt the BT model, with an error process which
is related to, but broader than, the main process. Then

t(x) = (1− α)N(x | µ, σ) + αN(x | µ, kσ)
In both cases, unlike Freeman, we will assume α to be unknown, with

prior distribution uniform in (0, 0.5). The analysis can easily be specialised
if α is known.

3 Message length for mixed distribution

The minimum message length estimation method is based on the use of an
estimate to allow a concise encoding of the available data given a data vector
x, a known discrete conditional probability function p(x | θ̂), and a prior
density h(θ)dθ over the unknown parameter θ, we consider a coded message
for encoding the value of x. The message has two parts: a first part stating
an estimated parameter value θ̂, encoded in some suitable code, and a second
part which states x using a Huffman code based on the distribution p(x | θ̂).
The length of the first part, in units of log2 e binary digits, is approximately
− ln{h(θ)s(θ̂)}, where s(θ̂) is roughly the expected estimation error of θ, and
the length of the second part is − ln p(x | θ̂). The details may be found
in Wallace [5]. That estimate is preferred which yields the shortest total
message length.

If the data x comprises a sample of N independent values {yi | i =
1, . . . , N} drawn from a distribution f(y | θ), the second part of the message
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may be constructed as the combination of N segments, each encoding one of
the observed y values with a code word of length − ln f(yi | θ̂).

In the outlier model, we are concerned with a sample of N independent
value {yi | i = 1, . . . , N} each of which may, with probability (1 − α), be
drawn from a main process distribution f(y | θ) or, with probability α, be
drawn from an error process distribution g(y | φ). Clearly, we could simply
regard the data as being drawn from the mixed distribution

t(y | α, θ, φ) = (1− α)f(y | θ) + αg(y | φ)
and use the minimum message length criterion to estimate the unknown pa-
rameters α, θ, φ. The length of the message segment for an observed value yi
would then be − ln t(yi | α̂, θ̂, φ̂). However, such an approach, while yielding
acceptable estimates for α, θ and φ, would appear to miss the objective which
Freeman, and the others whose work he discusses, were aiming for. That is,
the estimation process would appear to yield no useful statement about the
identity of the outliers in the sample.

3.1 Message identifying outliers

A different and apparently more “natural” use of the minimum message
length approach makes explicit use of the identification of each observation
as either an outlier or a main-process value. The message encoding the data
x = {yi | i = 1, . . . , N} again begins with a first part stating estimates
α̂, θ̂, φ̂ of the parameters of the mixture model, and the second part again
comprises a segment for each of the N observation values. However, the
segment encoding a value yi now comprises two phrases. The first states
whether the observation is regarded as an outlier or not, and the second
gives its value using a Huffman code based on either the outlier distribution
or the main process distribution. If the observation is regarded as an outlier,
the segment encoding it has total length

− ln α̂− ln g(y | φ̂)
and if it is regarded as an uncorrupted observation, the segment has length

− ln(1− α̂)− ln f(y | θ̂)
It would appear that an observation should be classified as an outlier if

− ln α̂− ln g(y | φ̂) < − ln(1− α̂)− ln f(y | θ̂)
i.e., if
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αg(y | φ̂) > (1− α)f(y | θ̂)

as this assignment rule would appear to minimise the total message length,
and, if the outlier/normal status of each observation is regarded as a free
parameter, this rule selects the parameter of highest posterior probability.

The length of the segment encoding observation y is then

min{− ln(α̂g(y | φ̂)),− ln((1− α̂)f(y | θ̂))}.

However, the above outlier identification rule leads to inconsistent es-
timates of α, θ and φ. This may be easily seen in the case of the N(µ, σ)
main process and uniform error process (section 2.1). The minimum message
length for given data will be achieved when

(a) each observation yi is classified as an outlier if α̂/R > (1−α̂)N(yi | µ̂, σ̂)

(b) The estimate of the fraction of outliers, α̂, is just the fraction of obser-
vations classified as outliers

(c) The estimates µ̂, σ̂ of the mean and standard deviation of the Nor-
mal process are the usual estimates calculated from those observations
classified as not being outliers.

Suppose that the set of observations indeed consists of (1 − α)N values
drawn from N(µ, σ), and αN values drawn from a uniform distribution of
range R. Let the values be classified into “normal” and “outlier” by test (a)
above, using α̂ = α, µ̂ = µ, σ̂ = σ. Clearly, a number of members of N(µ, σ)
will be misclassified as “outliers” by test (a), namely those members of largest
deviation from the mean. Further, a number of members of the uniform
distribution which happen to have values close to µ will be misclassified as
“normal” values. Overall, the effect is that the standard deviation of those
observations classified as “normal” by test (a) will be less than σ. When
the estimate σ̂ is formed as the maximum likelihood (or minimum message
length) estimate based on those observations classified as “normal”, we must
expect to find σ̂ < σ. As the effect is independent of N , the estimation
process is inconsistent.

Similar effects in a number of other estimation problems suggest that if
an estimation process estimates some parameters to higher precision than
the data warrants, and if the number of such parameters is proportional to
sample size, inconsistent estimates may result.
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3.2 Consistent identification of outliers

We now show that, without departing from a message form which asserts
an outlier/normal status for each observation, the message length can be
reduced further and the inconsistency removed.

Recall that the data comprises an ordered set of observations (y1, y2,
. . ., yi, . . ., yN). Observation yi could be coded as an outlier, with segment
length − ln{α̂g(yi | φ̂)}, or as a “normal” observation, with segment length
− ln{(1− α̂)f(yi | θ̂)}.

As earlier, define

t(yi | α̂, θ̂, φ̂) = α̂g(yi | φ̂) + (1− α̂)f(yi | θ̂) = ti (say)

Also define
witi = (1− α̂)f(yi | θ̂) vi = 1− wi,

where wi and vi are of course simply the posterior probabilities of “normal”
and “outlier” status for observation yi, assuming estimated parameter values
α̂, θ̂, φ̂.

Now construct a Huffman code for the two-state distribution with prob-
abilities (wi, vi). (Recall that a Huffman code over a discrete probability
distribution {pj, j = 1, 2, . . .},∑j pj = 1, maps each index j onto a symbol
string sj of length − log pj. We take the base of logarithms, i.e. the size of the
symbol alphabet, to be e = 2.718 . . .. The string sj is called the code work
for j. No code word is the prefix of another code word. Every sufficiently
long string of symbols has a unique code word as a prefix. If the string is
random, the probability that this code word is si is pi.)

Suppose that the code segment for observation yi+1 has already been
constructed as a string of symbols. Then this string must commence either
with the Huffman code word for wi or the code word for vi. If the former
is the case, encode yi as a “normal” observation, using a message segment
of length − ln{(1 − α̂)f(yi | θ̂)} = − ln{witi}. If the latter, encode yi as an
“outlier” using a message segment of length − ln{viti}.

Thus, each observation is classified as an outlier or a normal by a “pseudo-
random” choice from its posterior probability distribution. We may call the
selection process above “pseudo-random” because the symbol string encoding
observation yi+1 is not expected to have any statistical or causal relationship
to yi. That is, the symbol string encoding yi+1 behaves in this context as a
random string. Hence observation yi has probability wi of being classified as
a “normal”, and probability vi of being classified as an “outlier”.

Now consider the information available to someone receiving and decoding
a message encoded as above. The first part of the message announces the
estimates α̂, θ̂, φ̂ used in the encoding of observations.
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The next segment will concern the first observation, y1. It may have a
part of length − ln α̂ stating that y1 is an outlier, followed by a part of length
− ln g(y1 | φ̂) giving y1 encoded as an outlier. Alternatively it may have
a part of length − ln(1 − α̂) stating y1 is “normal”, and a part of length
− ln f(y1 | θ̂). In either case, the receiver has all the information (α̂, θ̂, φ̂)
needed to decode the message segment.

Having received the segment for y1, the receiver can of course calculate
t1, w1 and v1 as defined above, and hence construct the Huffman code over
the distribution (w1, v1). Since he knows whether y1 was encoded as a “nor-
mal” or as an “outlier”, the receiver can then deduce that the symbol string
encoding y2 has as prefix the appropriate word from this Huffman code.

It is therefore not necessary to include that word in the message segment
for y2, since the receiver can infer its value from the way y1 was encoded.

The net length of the message segment encoding y1 is thus:
If encoded as a “normal”:

− ln{(1− α̂)f(y1 | θ̂)}+ lnw1

where the first term is the message length to encode y1 as a normal observa-
tion, and the second subtracts the length of the Huffman code word which
can be omitted from the encoding of y2. Now note that

(1− α̂)f(y1 | θ̂) = w1t1

Hence, if y1 is encoded as “normal”, the net length of the message segment
for y1 is

− ln{w1t1}+ lnw1 = − ln t1

The same net length is obtained if y1 is encoded as an outlier. Hence,
although the message form states whether each observation is an outlier
or not, the message length behaves as if the total probability distribution
t(y | α̂, θ̂, φ̂) had been used. Strictly, this device is applicable to the encoding
of all observations save the last, yN . However, we neglect this end effect.

3.3 Parameter estimation

Our objectives are to estimate the unknown parameters, and to make some
inference about the number and identity of outliers. However, we are not
really concerned with the exact symbol string which encodes the data, or
with the outcomes of the pseudo-random observation classification described
in section 3.2. Rather than estimate the parameters α, θ and σ from sets of
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observations pseudo-randomly classified as outliers or normal, we let observa-
tion yi contribute to the estimate of the parameters of “normal” observations
with weight wi, and contribute to the estimate of the parameters of “outliers”
with weight vi. Recall that wi is the posterior probability that yi is a normal
observation. Similarly, the fraction of outliers, α, is estimated from the sum
of weights

∑

i vi.
It is easily shown that the estimates so obtained are consistent.

3.4 Minimum message length estimates

Here we consider the uniform error process model of section 2.1.
We have shown elsewhere (Wallace 1984) that, given a sample of size n

from a univariate normal distribution N(µ, σ) with µ and λ = log σ having
uniform priors, the minimum message length estimates of µ and σ are

µ′ =
∑

yi/n

σ′ =
∑

(yi − µ′)2/(n− 1)

The message segments encoding the estimates of µ and σ will optimally
state values µ̂, σ̂, which are values obtained by rounding µ′, σ′ to limited
precision. The overall message length is minimised when the precision to
which µ̂ and σ̂ are rounded is such that

E(µ′ − µ̂)2 = (σ′)2/n

E(λ′ − λ̂)2 = 1/(2(n− 1))

Better precision would increase the length of the specifications of µ̂ and
σ̂ without much reducing the length of the specification of the parameters.

Similarly, the fraction of outliers, α, is best estimated by

α′ = (number of outliers + 1/2)/(sample size + 1)

and the estimate stated as a value α̂ obtained by rounding α′ to limited
precision so that

E(α′ − α̂)2 = α′(1− α′)/N

where N is the total sample size.
Strictly, the above results apply to the estimation of α, µ and σ when the

classification of each observation is known. The fact that the classification
of the observations is unknown means that the estimates should ideally be
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stated to slightly less precision than stated above, since the increase in mes-
sage length arising from rounding the estimates can be in part reduced by
reclassifying some of the observations. However, this effect will be ignored
for the moment. Later, we will estimate its magnitude and show that it is
small.

3.5 Observation code lengths

If the first part of the message encoding the observations asserts an outlier
fraction α̂, the Huffman code word used to state that an observation is an
outlier will have length − ln α̂. However, the value α̂ is a rounded version of
an estimate α′, stated to precision such that

E(α̂− α′)2 = α′(1− α′)/N

Assuming E(α̂−α′) = 0, i.e., that the rounding is unbiased, the expected
length of the code word identifying an outlier value is (to second order)

E(− ln α̂) = − lnα′ +
1

2
(1/α′)2E(α̂− α′)2

= − lnα′ + (1− α′)/2Nα′

Similarly, the expected length of the code word identifying a main-process
value is

E(− ln(1− α̂)) = − ln(1− α′) + α′/2N(1− α′)

Rounding the estimates of µ and σ for the main (normal) process similarly
affect the expected length of the code word stating an observed value y using
a Huffman code based on the normal distribution.

If the Huffman code were based on the exact values µ′, σ′, we would
obtain a code word length for observation y of

− ln(ǫ/σ′
√
2π) + (y − µ′)2/2(σ′)2

The use of rounded values µ̂, σ̂ gives an expected length (to second order)
of

− ln(ǫ/σ′
√
2π) +

(

n

n− 1

)

(y − µ′)2/2(σ′)2 + 1/2n

where n is the number of “normal” process observations.
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It is interesting that for each of the three parameters α, µ and σ, the
effect of rounding on the expected total message length is to add 1/2 for
each parameter.

Combining these results, we have that the expected length of the code
word encoding an observed value yi as an outlier (in the uniform error process
model) is

− lnα′ + (1− α′)/2Nα′ + lnR/ǫ = − ln(α′gi) (say)

and the expected length of yi is coded as a normal observation is

− ln(1− α′) + α′/2N(1− α′) + ln(σ′
√
2π/ǫ)

+
(

n

n− 1

)

(y − µ′)2/2(σ′)2 + 1/2n

= − ln((1− α′)fi) (say)

Both lengths are gross lengths, i.e., those obtained without use of the
coding device described in section 3.2.

For each observation, define

ti = α′gi + (1− α′)fi

wi = (1− α′)fi/ti

vi = α′gi/ti

4 The Uniform Error Process Model

4.1 Parameter estimation

For each observation, let ti, fi, gi, vi and wi be defined as in section 3.5. Note
that these quantities are functions of α′, µ′ and σ′. Then if α′, µ′ and σ′ are
minimum message length estimates, they satisfy

µ′ =
∑

i

wiyi/n

σ′ =

√

√

√

√

(

∑

i

wi(yi − µ′)2/(n− 1)

)

n =
∑

i

wi

1− α′ = (n+
1

2
)/(N + 1)
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These equations are easily solved by iteration. Initial guesses for α, µ and
σ are used to calculate wi (i = 1, . . . , N), then new values for α, µ and σ may
be calculated. In the numerical examples discussed here, we use no-outlier
estimates as the initial guesses for µ and σ, and 0.1 for α.

The iteration may collapse towards α = 0 or α = 1. However, this has
happened only on data sets favouring an uncontaminated model or a uniform
model respectively.

4.2 Message length

The total message length comprises the coded specifications of α̂, σ̂ and µ̂,
and the coded observations y1, y2,. . ., yN . It is more convenient to regard
the second parameter as λ = ln σ, since λ has a uniform prior.

If the estimate θ′ of a parameter θ is specified using a code in which the
representable values of θ are separated by intervals of size δ, the rounded
value θ̂ actually specified may differ from θ′ by plus or minus δ/2, and on
average, we expect

E(θ′ − θ̂)2 = δ2/12

Further, the length of the Huffman code word for a value θ̂ will be approx-
imately − ln(δh(θ̂)) where h(θ)dθ is the prior density of θ. In our model, we
have assumed all parameters to have uniform priors, so the code word length
for θ′ can be written as ln(K/δ) where K is the size of the prior range of θ.
(Note that δ may be a function of θ′ and/or estimates of other parameters).

Because our analysis of message length involves some approximations,
it is possible that the interval δ may in some cases exceed the range K,
which would yield a negative value for ln(K/δ). We therefore calculate the
code word length for specifying a parameter to precision δ in range K as
0.5 ln(1 + K2/δ2). The prior range size and values of δ2/12 for the three
parameters are:

Parameter Prior range size δ2/12

α 0.5 α(1− α)/N
λ ln(R/6ǫ) 1/2(n− 1)
µ R σ2/n

where N is the sample size, n is (1−α′)N , R is the known prior of the obser-
vations, and ǫ is the measurement or recording precision of the observations.

The length of the coded observations is
∑

i ln ti.
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4.3 Revised precision estimate

The optimum precision with which a parameter estimate should be stated is
related to the second derivative of the log likelihood function with respect
to the estimate (Wallace 1984). In section 3.4, the optimum precisions are
given on the assumption that each observation is unequivocally identified as
an outlier or as a normal observation. The existence of some uncertainty
about the identification has the effect of reducing the second derivative of
the log likelihood function. Hence a small reduction in the total message
length can be achieved by using slightly lower precisions than those stated
in section 3.4. For instance, with the notation of section 3.5, the optimum
precisions for stating α′ is such that

E(α′ − α̂)2 ≡ 1/
∑

i

(gi − fi)
2/t2i

rather than

E(α′ − α̂)2 = α′(1− α′)/N

For each data set, we calculate the reduction in message length due to
reduced precision in α′. The calculation is more difficult for µ and σ, and
has not been attempted. However, an approximate analysis shows that the
effect for these parameters is expected to be smaller than for α.
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