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The MML classi�cation program, Snob, deals with mixture modelling (or cluster-
ing) of circular data. It has recently been extended to do Markov modelling of the
serial correlation between clusters such as modelling the fact that a Helix cluster
favours being followed by another Helix cluster. Such a model is better known as
a Hidden Markov Model. The search for the most appropriate secondary structure
classi�cation of protein data is of signi�cant importance and was addressed by
Hunter and States (1992) using the Bayesian classi�er, AutoClass, on Cartesian
co-ordinate data of protein residues. Dowe et al. (1996) improved upon this earlier
work by using Snob to cluster dihedral angle data, with the advantage that 3x3=9
Cartesian co-ordinates can be represented by the 2 orientation-invariant angles, �
and  . The Hidden Markov Model used here is shown to be a more appropriate
way again of modelling protein data and results in the selection of a simpler class
model with 17 structure classes. We report on this classi�cation, including the
class transition matrix, and relate it back to the amino-acid sequence and the sim-
ple Helix, Beta, Turn classi�cation. We �nd 3 types of Helix, 2 types of Beta and
many types of Turn. The most numerous Turn class de�nes a continuous 
exible
structure that is negatively correlated to all the other classes.

1 Introduction

In this paper we apply a Hidden Markov Model to model the structure of a col-
lection of known proteins. This Markov classi�cation is able to take advantage
of information implicit in the order of a sequence of observations and hence
is better suited to modelling protein data than a classi�cation model that
assumes independence between observations. We use an Minimum Message
Length (MML) information measure to evaluate our protein structure model
which enables us to �nd the model best supported by the known evidence.

This work follows on from earlier unsupervised classi�cation work mod-
elling protein structure by Hunter and States 1 using AutoClass 2 (a Bayesian
classi�er) that modelled protein structure in Cartesian co-ordinates and sub-
sequent work by Dowe et al.3 using Snob 4;5 (an MML classi�er) that modelled
protein structure using dihedral angles. The dihedral angle representation re-
quires the use of the circular von Mises distribution, but can express the same
observations more compactly, which results in an improved classi�cation.

The Markov classi�cation model di�ers from the standard in that instead
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Table 1: proteins in training and testing sets

1azu 1bp2 1ca2 1cc5 1ccr 1cpv 1crn 1ctx 1cy3 1cyc
1ecd 1est 1fc2 1fdh 1fdh 1fdx 1fx1 1gcn 1gcr 1gf1
1gf2 1gp1 1gp1 1hds 1hds 1hip 1lz1 1lzt 1mbd 1mbs
1mlt 1p2p 1pfc 1ppt 1rei 1rhd 1rn3 1sn3 1tgs 1tim
2app 2apr 2aza 2b5c 2cab 2ccy 2cyp 2dhb 2dhb 2gch
2gn5 2ig2 2ig2 2kai 2kai 2ldx 2lh1 2lzm 2mcp 2mcp
2pab 2rhe 2sga 2sns 2sod 2ssi 2stv 2taa 2tbv 3adk
3c2c 3cna 3fxc 3hhb 3hhb 3icb 3pcy 3pgk 3pgm 3rp2
3sgb 3tln 451c 4ape 4cts 4dfr 4fd1 4fxn 4ins 4ins
4mdh 4sbv 5cpa 5ldh 5pti 5rxn 6adh 7atc 7atc 8cat

1abp 1acx 1hmq 1nxb 1ppd 1pyp 2act 2alp
2cdv 2lhb 2sbt 3gpd 3grs 6api 6api

of assuming that the observations to be analysed are independent of one an-
other, it assumes that they have been generated from a �rst order Markov
process with as many states as there are classes in the model. The class of an
observation generated from such a model is thus dependent on the class of the
preceding observation. This permits runs of similar observations, as we expect
in protein data, to be modelled more e�ciently.

The model thus generated can be considered an alternate secondary struc-
ture model based only on the shape of known proteins. The results presented
here are derived from a set of 100 known proteins (table 1).

For such a model to be useful it must be su�ciently complex as to avoid
recklessly discarding information implicit in the observed data, but also not so
complex as to be overly speci�c to the observed data (over �tting). A model
that is too simple will describe all data badly and a model that is too complex
will tend to describe the known data well, but predict unseen data badly.

In this paper we utilise the information theory based Minimum Message
Length (MML) encoding proposed by Wallace6;7 to search for a Markov clas-
si�cation model of protein secondary structure that avoids both of the afore-
mentioned pitfalls. Within the MML paradigm, models are judged by their
ability to reduce the length of a message transmitting all our observations
to a receiver who initially shares only our prior beliefs. In this paradigm we
calculate the expected length of an optimal message sending a model for the
data and then actual observations given this model. The best model will min-
imise the length of this two-part message. The Markov classi�cation model is
signi�cantly better able to explain our protein structure data than previous
classi�cation models that neglected the information implicit in the sequence of
the observations.
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In this paper we use an extension of the Snob (von Mises) classi�er that im-
plements both the Markov classi�cation model and the von Mises distribution
to better model sequences of angle data.

2 Previous Work

Protein structure is summarised by the position of the backbone atoms as-
sociated with each residue in the protein. Hunter and States 1 modelled the
changes in the position of subsequent protein backbone atoms (alpha-carbon,
beta-carbon and nitrogen) in Cartesian co-ordinates. For each residue, 9 val-
ues were required in order to state the relative position of each of these atoms.
Unfortunately, these 9 values were highly correlated and this in turn led to
proliferation in the number of classes being found along the line of correlation.

The same backbone information can be more compactly summarised by
two dihedral angles, � and  .8 Dowe et al.3 modelled protein structure in this
way using a von Mises distribution,9 the circular analogue of the Normal dis-
tribution. The MML coding estimates for this distribution can be found in
Wallace and Dowe.10 This more compact description of protein structure led
to a simpler classi�cation being found by Snob.

The von Mises distribution, M (�; �), has mean direction � and concen-
tration parameter �. For small � it tends to a uniform distribution and for
large � it tends to a Normal distribution with variance 1=�. This distribution
is not a�ected by the `wrap around' problem that the Normal distribution has
when modelling angles. Snob is the only known program permitting mixture
modelling of circular distributions.

Both AutoClass and Snob assume independence between the observations
they model. Thus, these programs discard any sequential correlation informa-
tion contained in the order of the residues. The preceding papers made some
attempt to address this problem by partitioning the data into segments con-
secutive (�,  ) pairs however this again led to an increased number of classes
being found.

We extend this earlier work by taking into account the expected auto-
correlation in the secondary structure sequence and modelling it as a �rst
order Markov process. This avoids the need to segment the data and leads
to a simpler class structure being preferred. This, along with the use on the
von Mises distribution to model the � and  angle pairs, results in a more
appropriate model of protein structure.
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3 MML Overview

To quote C.S. Wallace, `The best explanation of the facts is the shortest'.
Taking this proposition seriously leads one into the domain of information
theory and speci�cally MinimumMessage Length (MML) encoding.

The basic idea of MML is that if we have some data (i.e. observations)
and we wish to �nd the best model (i.e. hypothesis) given this evidence, this
is equivalent to attempting to compress the data by �rst stating the model
and then stating the data assuming the model to be true. Such an explanation
can be transmitted as a message that any receiver who shares the same prior
beliefs as that of the sender can decode into the original data (to a stated level
of accuracy). No model that fails to compress the evidence can be considered
superior to the empty model (null hypothesis).

A common problem with protein modelling is that quite complicated mod-
els are required and as the number of model parameters increases so does the
risk of the model not generalising well. In the MML framework, overly com-
plicated models are rejected by the requirement that they need to save at least
as many bits in stating the data as they themselves take to be described.

Snob is a MML classi�er which, given some data, attempts to compress it
by constructing a classi�cation model which would save more bits in the trans-
mission of the data than the model itself takes to be described. Speci�cally,
such a model could be used to transmit the 3D structure of our protein data
in a more compact form. Dowe et al.3 gives a good introduction to Snob.

4 The tSnob Program

The standard Snob assumes independence between all observations and so
cannot directly model the extra information implicit in the order of a sequence
of observations. tSnob introduces a �rst order Markov model into the standard
Snob model. The classi�cation of any observation can in this way be made to
depend on the classi�cation of the neighbouring observations. Thus, sequences
of observations that may have been generated by a �rst order Markov process
are well described.

It is important to note that the Markov model is part of our hypothesis
and thus will be justi�ed on information-theoretic grounds (i.e. not overly
complex). The best class structure found using the Markov model may well
di�er markedly from the best class structure without the Markov model (in
the number of classes and the speci�c class parameters). Thus the result from
this program will, most likely, be quite di�erent from the result obtained by
�rst doing a standard classi�cation and then observing the class transitions
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(i.e. searching the two halves of the problem space independently).
It turns out that by the use of a simple dynamic programming method

the length of an optimal message encoding a dataset given such a model can
be easily calculated. The coding method and a robust search algorithm are
described in Edgoose and Allison.11

5 Data and Results

The data that we have to work with comes from X-ray crystallography. The
electron density maps generated enable the position of particular atoms within
a protein to be stated to within an accuracy of about 2 Angstrom units, which
translates to an error in � and  of between 10 and 20 degrees (we use 11.5
degrees or 0.2 radians as per Dowe et al.3).

In this paper we use two such datasets. The �rst dataset contains 100
proteins (table 1) (17301 residues) from the Brookhaven database. The model
and structure correlation we report relates to this dataset. The second dataset
contains 229 proteins (41731 residues) and is identical to that studied previ-
ously by Dowe et al.3. This second dataset enables us to make a direct message
length comparison with this earlier work, but unfortunately it was compiled
without amino acid or secondary structure attributes.

The best Markov classi�cation model on the primary dataset contains 17
classes with a message length of 7.13 bits/residue (the null, 1 class, model
yields 9.04 bits/residue).

The class structure is shown in �gure 1 with each class depicted by an el-
lipse with centre (��,� ) and dimensions ( 1p

��
, 1p

� 
). The actual observations

are overlaid to create a Ramachandran scatter plot. This type of plot is actu-
ally a square depiction of the surface of a torus and some classes (speci�cally
5,9 and 16) do wrap around the edges.

The speci�c class parameters are listed in table 2 along with the �rst
order Markov model describing the expected frequency of class transitions in
table 3. Values in the class transition table are quoted as the log di�erence of
the probabilities of a class occurring given the preceding class and in the global
context. These values can be interpreted as the number of bits saved in stating
a class by knowing the previous class. The classes have been ordered in these
tables so that larger values tend to appear near the diagonal of the transition
matrix. This has the e�ect of grouping sequentially related classes near to one
another. It is interesting to note that although some of these clusters give the
illusion of being correlated diagonally (for example classes 3 and 11) inspection
of the transition matrix shows them to occur in signi�cantly di�erent contexts.

To facilitate interpretation, we also relate this classi�cation to the known
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Figure 1: 17 class model

secondary structure (table 2) and amino acids sequence (table 4). This infor-
mation was not, however, utilised in the classi�cation process.

The same dataset as used in Dowe et al.3 was also modelled using the
Markov classi�cation model. This dataset contained 229 proteins (41731 residues)
and the best independent classi�cation model reported contained 27 classes
with a message length of 7.06 bits/residue (the null, 1 class, model yields
8.96 bits/residue). The best Markov classi�cation model found on this larger
dataset contained 19 classes with a message length of 6.40 bits/residue. Al-
though this 19 class model was derived from a di�erent (and much larger) set
of proteins and included two additional types of rare Turn class, it did not
appear to be substantively di�erent from the 17 class model.

The message saving from using the Markov classi�cation on this larger
dataset was about 0.66 bits/residue (or 27727 bits). To put this another way,
the Markov classi�cation model was found to be 227727 times more likely as an
explanation for the observed data than the standard Snob classi�cation model.
This is a strong result con�rming that the Markov classi�cation model is more
appropriate for modelling this kind of data.
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Table 2: class parameters and secondary structure correlation

Model Parameters Secondary-Structure
Class % �� �� � � T B H

53% 21% 26%
9 12.0 -96.7 0.6 56.2 0.2 0.93 0.03 0.03
16 3.4 -136.3 2.6 176.9 14.4 0.63 0.36 0.00
15 2.9 -95.0 8.4 -23.3 5.0 0.81 0.17 0.02
13 9.0 -136.1 9.3 150.5 13.5 0.35 0.65 0.00
2 13.2 -112.3 11.4 127.4 11.4 0.26 0.74 0.00
11 1.9 88.5 18.3 2.5 10.5 0.99 0.01 0.00
7 11.8 -72.1 16.0 139.9 9.7 0.78 0.22 0.00
3 1.6 59.0 30.7 40.2 14.6 0.93 0.04 0.02
0 4.6 -115.7 6.5 84.1 1.6 0.86 0.12 0.01
5 1.3 77.6 9.0 -161.7 2.1 0.87 0.12 0.01
8 4.9 -96.9 16.6 -1.9 15.5 0.84 0.00 0.15
10 7.3 -68.7 35.9 -20.0 29.8 0.60 0.00 0.40
6 3.7 -83.0 17.6 -38.7 14.8 0.36 0.00 0.64

14 3.1 -53.9 47.2 -40.3 31.8 0.50 0.00 0.50
12 7.6 -67.2 104.8 -38.2 86.2 0.03 0.00 0.97

1 4.9 -58.9 128.4 -46.8 125.3 0.01 0.00 0.99

4 6.8 -51.3 17.5 -53.5 18.6 0.15 0.00 0.85

6 Discussion

The 17 class Markov classi�cation model is a simpler model (fewer classes)
than those found in previous work using AutoClass and Snob. The classes
vary in weight from 1% (class 5) to 13% (class 2) of the data with the median
at 5%, which is a relatively even spread.

From table 2 we �nd 3 classes (1,4 and 12) that are strongly associated with
the Helix secondary structure, 2 classes (13 and 2) are most closely identi�ed as
Beta, and several classes (0,3,5,7,8,9,11 and 15) constitute di�erent 
avours of
Turn. Class 16 can best be described as a transitional class between Turn and
Beta and likewise the remaining classes (6,10 and 14) are transitional classes
between Turn and Helix.

From the transition model (table 3) we see that, as expected, most classes
are positively auto-correlated with the exception of classes 8 and 11 ( � 0).

The Turn class 9 (the second most abundant class, making up 12% of the
residues) has an auto-correlation of 78% (expected run length of 5 residues)
and very small kappa values. This class de�nes a very 
exible continuous
structure which is negatively correlated with all the other classes. The speci�c
conformation of residues within this class is most likely completely determined
by non-local structural e�ects. One possible explanation would be that, as the
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protein folds, the Helix and extended Beta structures form �rst (due to the
location of Proline, etc.) and then, right near the �nish, parts of the protein
have to 
exibly twist around to accommodate these earlier Helix and Beta
structures, and that this is the role of class 9.

The 3 Helix classes (1,4 and 12) can be further partitioned by noting that
transitions between class 4 and the other two are extremely rare. Also, a run of
class 4 Helix is most likely preceded by a residue in class 6. Both Helix groups
are most likely broken by a residue in class 10 in which Pro(P) is relatively more
abundant. As expected, there is little chance of a Helix class being followed by
a Beta class. The classes 6, 8 and 10 form a loose group due to the fact that
residues in classes 6 and 8 are most likely preceded by a residue in class 10.

From table 4 we can see that several amino acids will almost never take
on certain conformations. For example Ala(A), Glu(E), Ile(I), Pro(P), Ser(S),
Thr(T), Val(V) and Trp(W) are almost certain to never occur in class 11.
Class 3 contains a higher proportion than normal of Asp(D), Gly(G), His(H),
and Asn(N). We also note that that Ile(I) and Val(V) imply a much higher
than normal chance of class 2, which is a Beta structure. As expected, Pro(P)
only occurs in classes that overlap the region where �80o < � < �40o.8 It is
also of interest that Gly(G), Pro(P), Ser(S) and Thr(T) are consistently less
likely to occur in any of the three main Helix classes.

7 Structure Prediction - some preliminary results

We note in passing that the Markov classi�cation model can also be used to
predict secondary structure. Instead of modelling (�,  ) angle pairs, we model
amino-acid and secondary structure (H,B or T) pairs directly (i.e., 2 multi-
state attributes per residue). The Markov classi�cation model was used in this
manner on the smaller dataset of 100 proteins (table 1). The best model found
had 6 classes and yielded a message length of 4.73 bits/residue (the null, 1
class, model yields 5.64 bits/residue).

We use this model to predict secondary structure by determining the prob-
abilistic assignment of residues to classes based on the amino-acid sequence and
the �rst order Markov model only. The calculation of this optimal assignment,
which is in
uenced by the data on both sides of any particular residue, is de-
tailed in Edgoose and Allison.11 This optimal distribution over classes for each
residue can then be used to calculate a distribution over secondary structures
(H,B and T). This is our probabilistic secondary structure prediction.

Information measures provide a safe way to compare the prediction per-
formance of di�erent structure models. Such a measure speci�es the number of
bits required to send the true secondary structure given the probabilistic pre-
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dictions. Overly timid predictions and overly con�dent predictions are both
penalised. The best predictors will give the best compression.

The program was used in this way to predict the secondary structure of
15 unseen proteins (table 1) (3199 residues). The average cost for stating the
true secondary structure of a particular residue in an unseen protein given the
entire amino acid sequence was 1.23 bits, which is down from the 1.47 bits
required without the model (a prediction accuracy of 62.2% up from 52.6%).
The prediction accuracy achieved by this 6 class model is near to the bottom
end of the basic nearest neighbour pattern matching algorithms which perform
in the range from 63% to 68%.12 This is reasonably good result considering the
model has only 156 free parameters (i.e. each of the 6 classes requires 19 for
the amino acid distribution, 2 for the secondary structures distribution and 5
for the class transition distribution) and no database lookup is required.

One interesting aspect of this prediction model is that there is no need to
state any speci�c window size for the number of amino acids around a particular
residue that can in
uence the prediction of its secondary structure. Although
all the amino acids exert some in
uence, this in
uence becomes vanishingly
small the more distant the amino acid.

8 Conclusion

Early work in the classi�cation of protein structure using Cartesian co-ordinates
by Hunter and States 1 su�ered from signi�cant inter-attribute correlation
which led to a proliferation in the number of classes that were found. Subse-
quent work based on a von Mises modelling of the dihedral angle representation
by Dowe et al.3 improved this early work. However, both works discarded the
information implicit in the sequence of the observations.

A Markov classi�cation model has been applied successfully to the dihedral
angle representation of this data and has been shown to achieve signi�cantly
higher compression and is a more likely explanation of the data observed.

The best Markov classi�cation model found contained 17 classes with three
classes of Helix (two of which are closely related), two classes of Beta, and many
classes of Turn. One Turn class found was of particular note as it occurs in
segments with an expected length of 5 residues and exhibits extreme 
exibility.
This 17 class classi�cation is considerably simpler than the models previously
found 3 and hence more amenable to further analysis and model building.

The Markov classi�cation model is also shown to be directly applicable
to the prediction of secondary structure from amino acid sequence where a
simple 6 class model (156 parameters) is found to do surprisingly well (1.23
bits/residue) without reference to a database.
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Table 3: class transition log odds matrix (log2P (classjprevClass) � log2P (class))

Class
Prev. 9 16 15 13 2 11 7 3 0
Class 12% 3% 3% 9% 13% 2% 12% 2% 5%
9 2.7 -2.8 -2.3 -1.5 -1.7 -3.2 -1.4 -2.4 -1.9
16 -0.5 1.0 -0.0 1.5 0.0 -3.2 0.1 -3.0 0.7
15 -2.3 2.6 0.7 2.2 -2.8 -1.9 -1.6 0.2 1.1

13 -1.8 1.0 0.1 2.0 1.0 -1.9 0.6 -0.8 -1.6
2 -1.6 0.2 -0.2 -0.2 2.1 -3.2 0.3 0.5 -0.5
11 -4.3 2.0 1.0 -0.4 0.1 -1.9 1.7 -3.0 0.3
7 -2.3 0.7 1.9 -0.1 -0.1 1.9 1.1 0.4 0.6
3 -3.3 -1.3 0.8 0.9 -0.7 2.9 1.0 2.4 1.0
0 -1.0 0.3 1.2 0.2 -2.0 -1.9 0.9 0.6 0.1
5 -1.9 1.4 0.4 -0.4 -0.1 0.2 0.2 0.8 0.7
8 -2.4 -0.6 -2.1 -1.2 -2.0 2.5 1.3 2.2 1.9

10 -2.5 -3.5 -2.9 -4.5 -5.0 -2.2 -2.1 0.5 0.6
6 -2.6 -2.3 -0.3 -4.5 -4.7 -0.2 -2.0 -2.0 0.7
14 -3.1 -2.3 -2.6 -1.3 -3.7 -0.9 -2.6 -1.4 0.2
12 -4.9 -5.1 -4.9 -5.5 -6.0 -4.2 -5.9 -4.0 -2.5

1 -3.0 -5.1 -3.9 -5.5 -6.0 -4.2 -5.9 -2.0 -5.5

4 -0.4 -5.1 -4.9 -5.5 -6.0 -1.9 -4.9 -3.0 -3.5

Class
Prev. 5 8 10 6 14 12 1 4
Class 1% 5% 7% 4% 3% 8% 5% 7%
9 -0.8 -4.0 -3.4 -1.4 -3.9 -6.3 -2.6 -0.4
16 -0.3 0.2 0.2 -2.6 0.1 -2.4 -0.9 -3.8

15 2.2 -1.0 -2.7 -3.2 -3.3 -5.3 -4.6 -1.9
13 0.9 -3.3 -3.4 -4.2 -1.5 -6.3 -5.6 -4.5

2 0.4 -2.4 -2.4 -5.2 -2.6 -6.3 -62.1 -5.1

11 -0.8 0.8 -2.3 -1.8 -0.9 -2.7 -4.0 -5.1

7 -2.1 -1.6 -0.1 -5.2 1.5 -3.4 -4.6 -2.6

3 -0.7 -0.1 -1.1 -3.2 -0.1 -5.3 -4.6 -4.5

0 -0.1 -0.9 1.3 -3.6 2.0 -2.1 -3.0 -1.9
5 1.6 1.6 1.1 -1.3 -2.9 -2.9 -2.4 -3.8

8 1.3 -0.3 -3.6 1.2 0.6 -4.7 -2.6 -3.1

10 -0.2 2.9 1.1 3.0 -3.9 -2.3 -5.6 -4.1

6 1.4 0.6 1.5 1.8 1.8 0.2 -0.3 1.0
14 -0.1 1.1 2.2 -2.1 1.9 1.8 -2.0 -4.1

12 -3.7 -0.6 0.4 -0.8 -3.9 3.1 1.8 -3.5

1 -3.7 -3.3 0.6 -1.4 -2.1 1.4 3.7 -2.0

4 -3.7 -2.1 0.1 -1.3 -1.3 -2.7 -2.1 3.5
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Table 4: amino acid log odds given class (log2P (AAjclass) � log2P (AA))

Amino-Acid
Class A C D E F G H I K L

8% 2% 6% 5% 4% 9% 2% 5% 6% 8%
9 -0.2 -0.2 0.4 -0.1 -0.4 0.7 0.3 -0.7 0.2 -0.4
16 -0.5 0.3 -0.4 -0.8 0.0 1.6 -0.2 -1.4 -0.5 -1.3
15 -0.6 -0.9 0.5 -0.4 -0.4 -1.0 -0.2 0.2 -0.0 -0.1
13 0.0 0.6 -1.2 -0.3 0.7 -0.8 0.1 0.5 -0.3 -0.4
2 -0.8 0.4 -0.8 -0.5 0.3 -2.4 -0.4 1.1 -0.4 0.4
11 -3.9 -2.3 -2.3 -3.2 -2.8 3.3 -0.5 -4.1 -1.3 -2.9

7 -0.0 0.2 0.1 -0.4 -0.3 -1.1 -0.3 -0.5 -0.4 0.0
3 -0.9 -2.0 0.6 -1.5 -1.2 1.8 1.3 -2.2 0.2 -2.3

0 -0.8 -0.1 1.0 -0.2 0.6 -1.0 0.8 -0.2 -0.2 -0.3
5 -1.9 -2.4 -0.6 -2.4 -2.6 3.1 -1.3 -2.6 -1.1 -1.9
8 -0.2 0.2 0.8 0.2 -0.0 -1.0 0.5 -0.7 0.1 -0.1
10 0.4 -0.2 0.1 0.4 -0.8 -1.1 0.1 -0.9 0.3 0.0
6 0.3 0.6 -0.0 0.5 0.1 -1.2 0.3 -0.2 0.4 0.4
14 0.6 -0.7 0.0 0.5 -0.4 -1.2 -1.2 -0.4 -0.1 -0.1
12 0.7 -0.0 -0.1 0.7 0.2 -1.1 -0.2 -0.1 0.3 0.4
1 0.6 -0.3 -0.2 0.6 0.4 -1.2 -0.3 0.3 0.4 0.4
4 0.5 -0.8 -0.1 0.4 -0.1 -0.8 0.1 0.1 0.4 0.4

Amino-Acid
Class M N P Q R S T V W Y

2% 5% 5% 3% 3% 8% 7% 7% 2% 4%
9 -0.6 0.2 0.2 -0.1 -0.1 0.2 -0.1 -0.5 -0.9 -0.3
16 -1.0 0.1 -0.8 -0.4 -0.1 0.6 0.4 -1.1 0.1 -0.1
15 -0.7 0.0 0.3 -0.2 0.1 0.7 0.7 0.1 0.0 -0.6
13 0.4 -1.0 -4.0 0.2 0.3 0.5 0.4 0.3 0.6 0.7
2 0.1 -0.5 -2.1 -0.1 0.1 -0.5 0.5 1.1 0.4 0.7
11 -1.7 -0.1 -5.0 -2.6 -2.0 -3.3 -3.6 -5.2 -3.3 -1.1
7 -0.1 0.0 1.8 -0.0 -0.3 0.1 -0.2 -0.3 -0.4 -0.2
3 0.0 2.0 -4.8 0.1 0.1 -1.0 -2.6 -2.6 -3.1 -0.1
0 0.4 1.2 -1.8 -0.5 0.0 -0.1 -0.0 -0.3 0.3 0.2
5 -0.9 -0.6 -3.4 -1.9 -3.5 -1.1 -1.2 -3.0 -2.7 -2.3

8 -0.2 0.5 -1.4 0.4 0.1 0.4 0.4 -1.2 0.3 0.3
10 -0.1 -0.3 1.0 0.1 0.1 0.4 -0.1 -0.6 -0.1 -0.6
6 0.3 -0.3 -2.9 0.5 0.2 -0.3 -0.1 0.3 -0.0 -0.2
14 -0.5 -0.9 1.6 -0.3 -0.1 0.3 -0.4 -0.3 -0.0 -0.6
12 0.5 -0.2 -1.7 0.5 -0.0 -0.8 -0.4 0.1 0.0 -0.7
1 0.5 -0.6 -1.6 -0.1 0.3 -1.0 -0.4 0.1 0.2 0.1
4 0.5 -0.0 -0.8 0.2 0.1 -0.5 -0.6 -0.0 0.7 -0.2
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