
Discovering simple DNA sequences by compression

David R. Powell, David L. Dowe, Lloyd Allison and Trevor I. Dix

Department of Computer Science, Monash University, Clayton,

Vic. 3168, Australia

e-mail: fpowell, dld, lloyd, trevorg@cs.monash.edu.au

Abstract

An information-theoretic DNA compression scheme devised by Milosavl-

jevic and Jurka (1993) has been used in many places in the literature

for both the discovery of new genes and the compression of DNA. Their

compression method applies an encoding of previously occurring runs.

They use 5 di�erent code-words: four being the DNA bases, A, C, G and

T, and the other being a pointer to a previously occurring run. They

advocate a code-word of length log
2
5 for each of these and then encoding

a run by a code-word of length 2 � log
2
n, where n is the length of the

sequence. This scheme encodes the start of the sequence with a code-

word of length log
2
n and likewise encodes the end of the sequence with

a code-word of length log
2
n. In this paper, we show the above coding

scheme to be ine�cient in various ways and improve upon it so that it

can compress DNA. We discuss our implementation of various schemes

some of which run in linear time.

1 Introduction

Since DNA data strings compress, they are observed not to be random (in
the sense of Chaitin 1), although they do not compress a great deal. With
four DNA bases, we might expect 2 bits per character if DNA were random,
but we do not expect DNA to be completely random. However, zip or the
Unix Lempel-Ziv �le compressor, for example, can typically compress DNA
marginally if at all.

A popular information-theoretic DNA compression scheme recently de-
vised by Milosavljevic and Jurka 2 has been used in many places in the litera-
ture3;4;5;6;7 for the discovery of new genes by the compression of DNA. We note
here some ine�ciencies in the Milosavljevic and Jurka (MJ) coding scheme 2;7

and give some improvements to their scheme, some of which run in linear time
and improve the MJ method slightly, and others which run more slowly (e.g.
quadratic time) but o�er more marked compression.

In their compression method, Milosavljevic and Jurka 2 apply an encoding
of previously occurring runs. They use 5 di�erent code-words: four being the
DNA bases, A, C, G and T, and a �fth code-word, P, introducing a pointer
to a previously occurring subsequence. They advocate a code-word of length



log
2
5 for each of these. They also advocate encoding a run by a code-word of

length 2� log
2
n, where n is the length of the entire sequence. This redundant

code encodes the start of the sequence with a code-word of length log
2
n and

likewise encodes the end of the sequence with a code-word of length log
2
n.

We also note the slight di�erence between Milosavljevic and Jurka 2 and
Milosavljevic 7, the latter of which compares two sequences by using one as
the \source" and one as the \destination". As Milosavljevic7 points out, \the
only di�erence between the two algorithms is that in the former pointers point
to the occurrences of words within the same sequence while in the latter they
point to the occurrences of words within the source sequence.".

Typical examples of non-randomness in DNA include poly-A runs, (AT)*,
G-C rich regions, various common \motifs", ALUs and gene duplications. The
ALUs are a family of sequences of about 300 base pairs, occurring many thou-
sands of times in human DNA.

2 The Milosavljevic and Jurka method

This method takes a DNA sequence and splits it up into windows of length �xed
length n. These windows overlap by an amount v. Both n and v are parameters
to the algorithm, with typical values 2 n = 128 and v = 64. Figure 1 is an
example of this window size and overlap.

Window Overlap = v = 2

Window Size = n = 5

Window 3

Window 2

Window 1

Figure 1: Window size and overlap

The Milosavljevic and Jurka method considers each window in turn in-
dependently of the rest of the sequence. Each window is encoded using 5



code-words one each for A, T, G, C and a pointer P used to encode a pre-
viously occurring subsequence. The code-word is �xed to be of length log

2
5.

Encoding a pointer consists of a pointer code-word, followed by a starting po-
sition of the previous run and a length of that run. The starting position and
length are each encoded in log

2
n bits, where n is the size of the window.

Each window is encoded separately, and if this encoding is better than the
null encoding (log24 = 2 bits per base) by a �xed threshold, then the window is
deemed to be signi�cant. This threshold is also a parameter to the algorithm.

3 Corrections of Milosavljevic and Jurka ine�ciency

The compression algorithms are illustrated using the complete DNA sequence
of Human Tissue Plasminogen Activator Gene, GenBank accession number
K03021, containing 36594 bases, as originally used by Milosavljevic and Jurka2.

3.1 Re-implementation of MJ algorithm (MJR)

Since we did not have access to their source code, it was necessary to re-
implement the MJ algorithm so that we could compare the results of their
algorithm with the results of our algorithm . However, the re-implementation
gave slightly di�erent results to those presented in 2. The same model was
used as Milosavljevic and Jurka. A sliding window scheme was considered
with windows of width 128. Each successive window was placed 64 positions
further on. Milosavljevic and Jurka use a threshold of 22 � 7 + log

2
(36594)

bits. Any window encoded in fewer than 256 � 22 bits (256 = 128 � log
2
4

bits from the encoding of the null model for a window of 128) is considered
signi�cant a.

Table 1 presents a comparison of the reported results in 2 and those ob-
tained by our re-implementation (MJR). These encodings are shown in bits
less than the null model, which has 128 � log

2
4 = 256 bits for a window

of 128 characters. Those entries with an asterisk indicate windows in which
our re-implementation found a signi�cant saving but which were not explicitly
mentioned in 2; we used their executable to obtain their bit savings. Of the
asterisked entries, the �rst two were not reported but the others constitute
one segment of length 640 (from 23873 to 24512) with a gap of 64 (24001 to
24064). The long segment is similar to the segment 23888 to 24458 discussed
by Milosavljevic and Jurka.

aThe probability of any window having a short encoding would be guaranteed not to

exceed 2�7 � 0:01.



Table 1: Comparison of MJ and MJR bit savings

Window MJ bit saving MJR bit saving
7105-7232 * 41 39.9
7169-7296 41 39.9
16833-16960 * 38 37.6
16897-17024 41 39.9
17089-17216 22 21.2
23873-24000 * 38 37.3
24065-24192 * 35 34.9
24129-24256 * 45 44.2
24193-24320 * 49 48.9
24257-24384 * 56 55.8
24321-24448 56 55.9
24385-24512 * 22 21.1

All following results will be compared to our re-implementation, MJR, of
the MJ algorithm.

3.2 Correcting the ine�ciency simply by re-costing the pointers

The �rst ine�ciency in the Milosavljevic and Jurka 2 scheme that we can
correct without in any way slowing down the algorithm is to say that, if we are
currently in the k'th position in the sequence, then we can encode a pointer to
a repeated subsequence using log

2
((k�1)(n�k+1)) bits, whereas Milosavljevic

and Jurka use log
2
(n2) bits. This follows because Milosavljevic and Jurka 2

permit runs to start and end at any place, providing codewords of length
log

2
n for both start and �nish, whereas we note that there are (k�1) di�erent

positions from which the sequence can commence and then, given that the
sequence only requires (n�k+1) new characters, there are only (n�k+1)
positions in which the copy string can end, meaning that we can encode a
sequence pointed to from position k using approximately log

2
((k�1)(n�k+1))

bits. This suggests that an MJ pointer at an end, at position k = 1 or at
position k = n � 1, will be ine�cient by as much as log

2
n bits, whereas a

pointer in the middle, at position k = n=2, will only be ine�cient by 1+1 = 2
bits.

On average, assuming the distribution of pointers to be approximately
uniform between 1 and n,

nX
k=2

log
2
((k� 1)(n� k + 1)=(n

2
)) = log

2
(e)

nX
k=2

loge((k � 1)(n� k + 1)=(n
2
))



Table 2: Comparison of MJR and e�cient pointer bit savings

Window MJR bit saving E�cient pointer bit saving
7105-7232 39.92 44.45
7169-7296 39.92 46.53
16833-16960 37.60 42.73
16897-17024 39.92 45.32
17025-17152 * 16.70 22.11
17089-17216 # 21.28 28.35
23873-24000 37.33 51.37
23937-24064 * 18.75 33.53
24001-24128 * 11.72 29.15
24065-24192 34.87 54.97
24129-24256 44.23 63.07
24193-24320 48.87 67.73
24257-24384 55.77 76.54
24321-24448 55.90 70.48
24385-24512 # 21.14 33.36

� log
2
(e)

Z
1

0

loge(x(1� x)) dx

= log
2
(e)(

Z
1

0

loge(x) dx+

Z
1

0

loge(1� x) dx)

= log
2
(e)((�1) + (�1)) = �2 log

2
(e)

suggesting the MJ code to be ine�cient by, on average, approximately
2 log

2
(e) bits � 2:88 bits, or 2 nits (natural bits), per pointer.

We also note that our correction is fast, being implementable in linear
time; we refer to our method below as the e�cient pointer method. Theoretical
results8 show that, given a uniformmethod of encoding the pointers in the MJ
scheme, a linear-time greedy algorithm leads to a global optimum. Although
a greedy algorithm is not guaranteed to lead to a global optimum for our
correction (above) to the MJ scheme, a greedy algorithm does lead to a linear-
time algorithmwhich improves the MJ scheme, arriving at better compression.

3.3 Comparing re-implementation with e�cient pointers

We compared the MJR (Section 3.1) with our e�cient pointer method (Section
3.2). As expected, more windows were found to have a signi�cant compression
under the same threshold of 22 bits. Table 2 shows the bit savings over the
same null model for both these methods.



Of these windows, 3 were not found (denoted by *) by the MJ executable
and 5 were not found by MJR (denoted by * and #). Recall the long segment
from 23888-24458 reported in 2 and our corresponding MJR segment of length
640 (from 23873 to 24512) with a gap of 64 (24001 to 24064). The application
of more e�cient pointers now identi�es this whole segment without any gap;
furthermore, all intervening windows have signi�cant compression. Also, by
discovering the window 17025 to 17152, the MJR segment from 16833 to 17024
has been extended to include 16897 to 17216, giving a segment of length 384
from 16833 to 17216.

3.4 Greedy encoding using e�cient pointers

When encoding with �xed-size pointers (i.e., MJ pointers), a greedy linear time
approach to choosing the encoding is guaranteed to be optimal 8. However,
no such guarantee of optimality exists for the variable size e�cient pointers
described above. Thus, there are various ways to choose an encoding when
using these more e�cient pointers.

With our e�cient pointers, two obvious approaches can be taken to �nd
an encoding in linear time. Firstly, the encoding arrived at using the MJ
algorithm was used, as in Section 3.1, with the pointers later replaced with
their more e�cient variation. This is guaranteed to give an encoding in fewer
bits for any region with at least one pointer (otherwise it encodes in the same
number of bits, namely n log

2
(5) bits, where n is the length of the region).

The second practical possibility is to ignore MJ pointers and use our ef-
�cient pointers throughout the greedy algorithm. This will generally �nd a
better encoding than the previous method. While it could conceivably be
worse, in practice this method was never found to be so. For this greedy en-
coding, savings of typically 0-10 bits out of � 200 bits were observed over the
above-mentioned method and no new signi�cant windows were found. In the
following we use this second greedy algorithm.

3.5 Optimal encoding using e�cient pointers

Neither of the above linear time techniques for �nding an encoding with vari-
able length pointers are guaranteed to �nd the optimal encoding. However, it
is possible to �nd the optimal encoding with variable length pointers, retaining
a uniform prior on the starting position, in O(n2) time. This relies on the fact
that the optimal encoding of a su�x of a string s[i::jsj] is independent of s[1::i].
So, to �nd the optimal encoding for s[i::jsj], all possible encodings are looked
at, not just the one using the longest match starting at s[i] as in done for the
greedy approach.



For the above-mentioned data, there were only 5 windows for which the
greedy approach did not �nd the optimal encoding. Using the optimal encoding
on these windows typically saved only 0.1 bits out of � 200 bits.

An encoding can be represented by placing a `-' between each symbol, and
replacing a pointer by the sequence it encodes. This representation makes it
easy to see repeat regions. An encoding for the sequence TGTACGTACCGTmight
be T-G-T-A-C-GTAC-CGT. Note the two repeats in this example sequence.

As an example, the encoding of the window from23937 to 24064 is shown in
Figure 2 as produced by the MJR algorithm, the greedy encoding with e�cient
pointers, and the optimal encoding with e�cient pointers respectively. This
region was not found by the MJ algorithm, but was found by both the greedy
and optimal encoding with e�cient pointers methods. Note the more e�cient
encoding of our greedy e�cient pointer method. Also, the �rst two encoded
repeats illustrate the marginal improvement that our optimal encoding gives
over our greedy encoding method.

(a) Representation of MJR encoding (encoded in 237.25 bits)
G-A-T-A-G-A-T-T-G-A-T-A-G-A-TGATAGATGATAG-G-T-GATAGATT-A-G-A-T-A-A-ATA

GATGATA-C-A-T-A-C-ATGATAGAT-A-G-A-T-GATAAATAGA-C-G-G-T-A-G-A-T-G-G-A-T

-G-A-C-A-G-A-T-A-G-A-C-AGATGATAGGTGATAGAT-A-G-A-T-G-A-

(b) Representation of greedy e�cient pointer encoding (encoded in 216.37 bits)
G-A-T-A-G-A-T-T-GATAGAT-GATAGATGATAG-G-TGATAGAT-T-A-G-A-T-A-A-ATAGATGA

TA-C-A-T-A-C-ATGATAGAT-A-G-A-T-GATAAATAGA-C-G-G-T-A-G-A-T-G-G-A-T-G-A-

C-AGATAGA-C-AGATGATAGGTGATAGAT-AGATGA-

(c) Representation of optimal e�cient pointer encoding (encoded in 216.29
bits)
G-A-T-A-G-A-T-T-GATAGA-TGATAGATGATAG-G-TGATAGAT-T-A-G-A-T-A-A-ATAGATGA

TA-C-A-T-A-C-ATGATAGAT-A-G-A-T-GATAAATAGA-C-G-G-T-A-G-A-T-G-G-A-T-G-A-

C-AGATAGA-C-AGATGATAGGTGATAGAT-AGATGA-

Figure 2: Representation of encodings for window 23937 to 24064

4 Other variations and future work

Another ine�ciency in the MJ coding is the assumption that A, C, G, T and
pointer code-word P all have equal length code-words. This could be modi�ed
so that these were each permitted to (adaptively) have di�erent probabilities.
The search for these 5 probabilities could be done iteratively, starting with all
equal to 1=5 for example, re-estimating and then iterating until convergence.

We note that this could be further extended to permit a gradually in-
creasing probability of the pointer. We can thus think of our message as an



encoding of a string based on the alphabet A, C, G, T, P and an encoding
of the strings pointed to. Rather than assume this to come from a 0th or-
der Markov model, we could use a higher-order Hidden Markov Model or a
Lempel-Ziv compressor. Of course, the more general the model, the slower the
compression.

We can come up with a much more e�cient encoding of the runs. We
can do this by encoding the start position for each run as having code-length
log(k�1), since we know that the run must begin at least one place to the left
of the current position. Letting �i be the length of a run pointed to (where
we assume that �i � 1 ), we model run length by a geometric distribution and
use the information-theoretic (compression-related) MinimumMessage Length
principle 9;10 to estimate the geometric parameter, p.

Making these modi�cations will slow down the algorithm. However, it is
almost guaranteed to improve the search.

5 Compressing the Entire Sequence

None of the techniques described so far, attempt to compress the sequence as a
whole. Compressing the entire sequence is desirable because the compression
rate gives an indication of the redundancy (and therefore the information-
content) of the sequence. All modi�cations described here will be on the
second technique described in Section 3.4, call this technique MJE (MJ ef-
�cient pointers). We show a number of modi�cations to the MJE technique
to compress entire sequences. In all instances the sequence is broken up into
non-overlapping windows of length w (where w is parameter to the algorithm).
How to best apply overlapping windows to the methods described below re-
mains an open problem.

5.1 First compression method

If a sequence were `compressed' by applying the MJE method to each window,
the result would (in general) be longer than the input sequence. This stems
from the fact that most windows have few pointers, yet the pointers are as-
signed a probability of 1=5 thus increasing the code length for each of A,T,G
and C over 2 bits per base. As a �rst step to deal with this, we can use the
following method. Each window is allowed to be a `Ptr' window, or a `noPtr'
window. A Ptr window is encoded with the MJE technique, and the noPtr
window is simply encoded using 2 bits per base.

The sequence is then encoded by stating for each window whether it is a
Ptr or a noPtr window, followed by the encoded window. The encoding method



Table 3: Ptr windows found using the �rst compression method

Window Encoded Length (in bits)
7169 - 7296 215.33
16897 - 17024 216.73
17025 - 17152 239.38
23937 - 24064 221.94
24065 - 24192 206.09
24193 - 24320 193.26
24321 - 24448 186.61

(Ptr or noPtr) for each window is chosen by encoding using both methods, then
using the one which results in the shorter encoding. The encoding of stating
whether a window is a Ptr or a noPtr is done adaptively with probability
(numWinPtr + 1)=(totWin + 2) where numWinPtr is the number of Ptr
windows so far, and totWin is the total number of windows seen so far.

For the sequence HUMTPA this compression method resulted in an en-
coding 0:41% shorter than the input. While this is not signi�cant, it is a �rst
approach, and does actually perform compression . Table 3 shows the Ptr
windows from using this compression technique for the HUMTPA sequence.

5.2 Second compression method

The next method tried is the same as the one described in the previous section
except for a modi�cation to the probability of the �ve possible events A,T,G,C
and pointer. The noPtr windows are now encoded using an adaptive proba-
bility estimate for each of the four bases. That is, the probability of a given
base, X, is (numX + 1)=(total + 4) where numX is the number of times X
has occurred so far, and total is the total number of bases seen.

The Ptr windows are encoded by �rst encoding with probability Pptr

whether the next symbol is a pointer or one of A,T,G or C b. Again Pptr is es-
timated adaptively by Pptr = (numPtrs+ 1)=(numPos+ 2), where numPtrs

is the number of pointers used so far, and numPos is the number of possible
positions for pointers. The counts, numX, total, numPtrs and numPos are
updated after each window. For noPtr windows, numX and total only are
updated. After a Ptr window, numX, total, numPtrs and numPos are all
updated. A region of the window that has been encoded using a pointer (ie.
it is a duplicate of something earlier in this window), does not contribute to
the updating of any of these counts.

bNote that this two part encoding is equivalent to rescaling the distribution of A,T,G,C

to allow for another event of probability Pptr



Table 4: Ptr windows found using the second compression method

Window Encoded Length (in bits)
7169-7296 215.41
8961-9088 256.45
10497-10624 243.54
16001-16128 253.83
16897-17024 199.79
17025-17152 219.70
19073-19200 245.00
19841-19968 247.61
21249-21376 251.42
21505-21632 244.40
21633-21760 253.25
22529-22656 251.34
23809-23936 251.06
23937-24064 226.98
24065-24192 218.97
24193-24320 203.05
24321-24448 194.06
24449-24576 253.99
24961-25088 247.87
26369-26496 241.55
29057-29184 237.43
34433-34560 250.20
36481-36594 212.91

For the sequence HUMTPA this compression method resulted in an en-
coding 0:54% shorter than the input. The �nal probabilities were as follows:
P (A) = 0:26, P (T) = 0:25, P (G) = 0:25 and P (C) = 0:24, which is very
close to a uniform distribution of the bases. The �nal pointer probability was
P (pointer) = 0:02 which is much less than 1=5, used in the earlier MJ tech-
niques. The encoding of the HUMTPA sequence with this compression scheme
resulted in 23 windows being encoded with the Ptr method. These are shown
in Table 4.

5.3 Third compression method

The overall compression achieved by the two previous methods is small. In an
attempt to improve the overall compression, we now apply a �xed size Markov
Model to estimate the probability of the bases A,T,G and C. Each Ptr window



Table 5: Ptr windows found using the third compression method

Window Encoded Length (in bits)
7169 - 7296 215.41
16897 - 17024 200.97
17025 - 17152 220.75
23809 - 23936 252.68
23937 - 24064 226.18
36481 - 36594 215.14

can be encoded using a Markov Model of order in the range 0 to maxOrder, so
each Ptr window �rst encodes the order of the Markov Model used. This encod-
ing of the order of the Markov Model used is done in log

2
(maxOrder+1) bits,

assuming each order equally likely a priori. The order of the Markov Model
used in Ptr windows was found to have little e�ect on the overall compression,
however it did a�ect the number of windows encoded using the Ptr method
varying from 6 to 9 windows for the HUMTPA sequence. This is because the
encoding using the Ptr method is often close (in terms of bit length) to the
encoding using the noPtr method - thus a small change in the Ptr encoding
can a�ect whether a window is encoded using the Ptr or noPtr method.

We applied this compression technique to the HUMTPA sequence and set
maxOrder = 5, and �xed the Markov Model for Ptr windows to be order 0.
The compression achieved was 4:3%. Only 6 windows were encoded using the
Ptr method, these windows are shown in Table 5. This large decrease in Ptr
windows compared to the previous section is due to the noPtr windows being
compressed by the Markov Model. Thus the Ptr windows are not the only
`signi�cant' windows, some of the windows encoded using the noPtr method
compress well and thus should also be deemed signi�cant. In the above example
all but 62 of the 286 windows were encoded in fewer bits than the null model
(256 bits); so exactly what is signi�cant is di�cult to quantify.

It is interesting to note for the HUMTPA sequence, the usage of the Markov
Model order was approximately uniform over orders 1 to 5 with order 0 used
only rarely.

6 Conclusion

DNA sequences are compressible, so they are not random. But they are not
highly compressible. It is therefore necessary for coding methods to be as
e�cient as possible. Ine�ciencies in the coding method will lead to structure
within the DNA being missed.



The Milosavljevic and Jurka method is popular for the discovery of DNA
motifs and compression. We have demonstrated an ine�ciency in their use of
pointers. We have devised and implemented various linear and quadratic time
schemes which, in better compressing the DNA, have extracted longer segments
of biological interest. We recommend the use of our greedy encoding algorithm
using our e�cient pointers throughout, particularly for long sequences. We
have also proposed some further theoretical extensions. We have also proposed
several techniques for applying the Milosavljevic and Jurka method to compress
an entire DNA sequence.

Acknowledgments

David Dowe was supported by Australian Research Council (ARC) Grant No.
A49602504. We thank Aleks Milosavljevic for supplying his executable code.

References

1. G.J. Chaitin. On the length of programs for computing �nite sequences.
Journal of the Association for Computing Machinery, 13:547{549, 1966.

2. A. Milosavljevic and J. Jurka. Discovering simple DNA sequences by
the algorithmic signi�cance method. Computer Applications in the Bio-

sciences, 9(4):407{411, 1993.
3. G. Benson and M. S. Waterman. A method for fast database search for

all K-Nucleotide repeats. Nucleic Acids Research, 22:4828{4836, 1994.
4. T Dandekar and M. W. Hentze. Finding the hairpin in the haystack -

searching for RNA motifs. Trends in Genetics, 11:45{50, 1995.
5. C. Fields. Informatics for ubiquitous sequencing. Trends in Biotechnol-

ogy, 14:286{289, 1996.
6. E. Rivals, Dauchet, Delehaye, and Delgrange. Compression and genetic

sequence analysis. Biochimie, 78:315{322, 1996.
7. A. Milosavljevic. Discovering dependencies via algorithmic mutual infor-

mation. Machine Learning, 21:35{50, 1995.
8. J. A. Storer. Data Compression: Methods and Theory. Computer Sci-

ence Press, 1988.
9. C.S. Wallace and D.M. Boulton. An information measure for classi�ca-

tion. Computer Journal, 11:185{194, 1968.
10. C.S. Wallace and P.R. Freeman. Estimation and inference by compact

coding. Journal of the Royal Statistical Society (Series B), 49:240{252,
1987.


