
COMPUTER SCIENCE

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 3

Generator and Search Objects in Java
Lloyd Allison
School of Computer Science
Monash University
Australia 3168
http://www.csse.monash.edu.au/

Generator classes are defined in the object oriented programming language Java
by using continuation-style programming. Generator objects are used to write
Prolog-like programs in Java to solve combinatorial constraint satisfaction
problems. A collection of generators oriented to world wide web applications is
demonstrated on searches for HTML pages.

Keywords: continuation, generator, constraint satisfaction problem,
combinatorial search, world wide web search, Java

Manuscript received: August 1999
Associate Editor: Janet Smith

Copyright© 2000, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
A continuation is a function (or procedure or method) used to represent a following computation.
Continuations arose in denotational semantics as a way of defining the meaning of jumps and other
sequencers in imperative programming languages. Here they are used in the object oriented
programming language Java to implement combinatorial generators for constraint satisfaction
problems and to write Prolog-like searches for world wide web pages.

The easiest languages in which to do continuation style programming are the lazy functional
languages such as Haskell (Hudak et al, 1992). The applicative language Scheme (Hayes et al,
1986) even has continuations built into it as a predefined type. However, continuations
can also be programmed in an imperative language such as C or Pascal if it is possible to pass a
procedure as a parameter. The object oriented language Java does not allow procedures as
parameters but references to objects can be passed as parameters and it is possible to define
generator and continuation classes. These classes can be conveniently used in a Java application
program or in an applet, if a task includes a search for the solution of a combinatorial problem,
without having to switch to a non-deterministic language.

Continuations were first used to define jumps and other sequencers by Strachey and Wadsworth
(1974) and Milne (1976). Strachey and Wadsworth attribute the origin of the idea to Mazurkiewicz’s
tail functions (Mazurkiewicz, 1971). Strachey, Wadsworth and Milne demonstrated that
continuations could define arbitrary control mechanisms in programming languages. Their power
has been used in semantics of Prolog (Nicholson and Foo, 1989; Finlay and Allison, 1993).

This paper demonstrates that continuations can be used in an object oriented programming
language such as Java. It uses the technique to implement Java classes that can be used to write
Prolog-like programs in Java to solve combinatorial constraint problems and, by also making use of

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 20004

Java’s internet package, to perform world wide web searches providing an alternative to adding
web-awareness to a logic language as in LogicWeb (Loke et al,1996).

2. CONTINUATIONS
This section describes continuations in the context of functional programming where they
developed; it can be skipped if the idea is familiar. Section 3 describes continuations in Java.

A continuation is just a function h given to another function f to continue or to follow on from
f. In some applications it can be thought of as f ’s return-address plus suitable state information made
explicitly available to f:

Note that the arrow, as in u→v, constructs a function type which might be written as function(u)v
in some imperative languages. The arrow is right associative so the parentheses in the type of f can
be omitted. It is also common practice to omit parentheses in function applications, e.g. g x instead
of g(x),unless they are necessary to override operator priority. The function f is a Curried function,
that is we write f h x rather than f(h,x).

In the above artificial example, we think of g as the main body of f. Function f does some
computation, g, on x and passes the result to f ’s continuation, h. The formal parameter h represents
whatever happens after f, hence the term continuation. Given an actual continuation k, f k is there-
fore a rather complex way of expressing the composition k.g.F k can also be read forwards as “do
f and then do k” in contrast to k.g“do g and then do k”. The full power of continuation programming
comes from the fact that f can be reprogrammed to invoke its continuation h zero, once or several
times as it chooses, possibly in a data-dependent way, e.g.

where p is typically some simple computation that collates the results of h. In the following sections,
logical disjunction is implemented by multiple uses of a continuation, the reason being that a
successful search might come from one or another lines of computation.

In many uses of continuations the types t and u are the same and then:

In this case, f applied to a continuation yields a continuation, the types just fall out this way, which
is convenient if f can be split into f1 and f2 as in f h = f1(f2 h).This reads as “do f1 and then do (f2
and then do h)”.

One particular use of continuations is in denotational semantics (Milne and Strachey, 1976) to
define the semantics of imperative programming languages with jumps. The state of an imperative
program is modelled by a type State.Each command, of type Cmd, in the imperative language
performs a state transition. The environment, of type Env, holds information about variables etc. The
final output or answer of a program is modelled by the type Ans.The meaning of commands is given

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 5

by a function C which takes the command being defined, an environment to map names onto
bindings, a continuation being what (normally) happens after the command, and the current state:

The power of this form of C is that a jump to a label, as above, can discard the continuation that
represents the normal sequential flow of execution and can instead execute another continuation
which is bound to the label in the environment.

Note that a continuation is just a function used in a particular way, it does not need to be a special
language mechanism.

Java does not allow procedures and functions, i.e. methods, to be passed as parameters of
procedures and functions. It does however allow objects, instances of classes, to be passed as
parameters. In what follows, generator and continuation objects are created and these have methods
that behave in the same way as the continuations from denotational semantics.

3. CONTINUATIONS AND GENERATORS
The very term object in “object oriented programming” tends to imply notions of a rather concrete
thing, probably with a state. On the other hand a pure function has no state. Functional
programming might model a parser, for example, as a pure function from source language to parse
tree. It might be useful or necessary to define internal states for the parser but each state would be
a pure value and state transitions would be functions on these value.

Object oriented programming might model the parser as an object with state, having methods to
query parts of the state and to advance the parsing process. It might alternatively concentrate on the
result of parsing, i.e. the parse tree, and define a class of parse trees having the parser buried in its
constructor.

Generating solutions to a combinatorial constraint satisfaction problem is closely related to
parsing and indeed a grammar can be used to generate sentences of a language, for example to test
a compiler or even for the purposes of humour (Bulhak, 1996).

Continuations can be used in functional and imperative programming (Allison, 1990) to solve
combinatorial search problems. Typically there are constraints that a (partial) answer must satisfy;
often one talks of partial solutions which are not yet complete but which satisfy the constraints so
far and which may lead to one or more complete solutions. The particular problem will imply
certain operators or generators that can be applied to extend or modify a partial solution. Basic
atomic generators can be put together in various combinations using operators to form larger, more
complex generators. Constraint satisfaction problems become difficult and require a search process
in situations where a valid solution can be easily recognised but the order in which the basic
generators need to be applied to produce such a solution is not easily determined. This situation can
be modelled by the following functional types:

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 20006

A generator requires a continuation parameter to complete its branch of the search. At some point in
a combinatorial search we have a partial solution or Stateand it may be possible to extend it into some
complete, final solutions i.e. a State list,possibly empty. We model this in Java by providing
interfaces that particular instances of Generator and continuations GenContinuationmust implement:

Note that continue is a reserved word in Java. Note also that we simply print solutions to the
problem, rather than returning lists of solutions in a data structure. If necessary, the final
continuation that recognises valid solutions could place them in a Java data structure.

One of the simplest generators adds an integer literal to a partial solution:

Consis a method that prepends a value to a State; the word is taken from the programming language
Lisp.

The logic programming language Prolog (Sterling and Shapiro, 1986) is based on first-order
predicate logic. It is found to be powerful in artificial intelligence and deductive database
applications. Predicate logic allows the high-level specification of solutions to many constraint
satisfaction problems. Prolog also provides a non-deterministic search mechanism. This gives the
inspiration for some Java generators below.

It is often necessary to apply the conjunction of two generators in sequence. To invoke generators
g1 and g2 and then continuation c, invoke gl with the continuation formed from g2 and c:

The constructor GenConttakes a generator and a continuation and returns a continuation which
invokes the given generator, passing it the given continuation as its parameter. If g1.generatefails,
i.e. violates a constraint and is an unsuccessful search, it simply returns and does not invoke

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 7

GenCont(g2,c).generate.Similarly if g1.generatesucceeds but g2.generatefails then c.continuwill
not be invoked.

GenAndcan be used n times by the Generator GenDowhich forms the n-fold conjunction of a
generator with itself:

If there are zero generators to be composed by GenDo the result should obviously succeed,
continuing with the rest of the computation and the trivial generator, GenSuccess,is included for
this purpose.

To complement conjunction, the disjunction GenOrof two generators succeeds if either of them
succeeds:

Note that the continuation c to GenOr is passed on twice, once to g1.generateand once to
g2.generate.GenOr is used to define alternative branches of a search process. Naturally all
solutions found by g1 or by g2 appear in the program’s output.

Further generators can be defined such as GenChoicewhich is the n-fold disjunction of GenInt;
it tries choices of integer literals between 1 and n:

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 20008

A choice between zero alternatives should obviously fail, i.e. not continue, and GenFail is included
for this purpose.

As described earlier, a line of computation may lead to zero or more solutions. Some generators
test constraints of a particular search problem and can be thought of as filters, that is they fail (return
immediately) if their constraints are violated and otherwise succeed (continue). Failure prunes off
a branch of the search tree.

4. N-QUEENS
The n-queens problem is to place n queens on an nxn chess board in such a way that no two queens
threaten each other. It is a classic example of a constraint satisfaction problem, often used for
illustrative purposes as it is both an interesting puzzle and easy to describe. Obviously, no two
queens can be on the same row or column and therefore a solution can be represented by a
permutation of the row-numbers amongst the columns. Not all permutations correspond to solutions
of the n-queens problem however because the constraints on diagonals also have to be checked.

Solving the n-queens problem in a non-deterministic language (Floyd, 1967) is simplicity itself:

Failure causes backtracking through other sequences of choices.
The classes defined in the previous section can now be used to solve the n-queens problem in

Java. The central step is to choose a row for the queen on the current column and then to check that
it does not threaten any previously placed queen:

Recall that GenChoice(n)is the disjunction of GenInt(1)to GenInt(n).
An n-fold conjunction (GenDo)of the central step will successfully place all n queens, if this is

possible. First, the generator nq is constructed which will seek solutions:

When nq has been constructed, its generate method is invoked with a Success continuation and an
initial, empty State.The resulting Java program is more verbose than the non-deterministic one but
matches its structure closely.

For this problem the Stateclass is implemented as a linked list which is easily programmed in
Java. The final continuation class Success simply prints out the state. Details of checking the
validity of an n-queens solution are omitted.

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 9

5. USING THE JAVA PROGRAM’S STATE
The previous implementation of generators and continuations in Java has the drawback that State is
compiled into the definitions of the various generator classes. For the n-queens problem, and for
several other combinatorial problems, a simple linked list is a suitable implementation of the state
but most constraint satisfaction problems will require quite different definitions. Java classes cannot
be parameterised on types or made generic so recompilation would be necessary if the state were
changed.

One possible solution would be to make the state an interface specification or template which
instances of state could implement but it is not at all clear what something as general as a “state”
should specify in general over and above the most general Java class Object.

Another possibility is to use the state of the Java program (state as in imperative programming)
to hold the components of the solutions to the problem. This involves dropping the State parameter
of the generate and continu methods:

Apart from deleting the State parameters, no change is required to the central infrastructure classes
such as GenAndand GenOr. However, those generators that manipulate the (partial) problem
solution, such as GenInt,do require major changes because they need to communicate with each
other. They previously used the State parameters of their generate methods to do this. Their
constructors now need to be made aware of which variables in the Java state will be used for
communication. For example, GenInt.generateneeds to place an integer value in an integer variable:

Unfortunately for GenInt, all Java parameters of basic types are passed by-value; there are no
reference parametersin Java in the usual sense of the term.Therefore there is no way in which
GenInt.generatecan alter an int parameter given to it or to the constructor of GenInt.Consequently
a mutable IntVar wrapper class having a set method must be used. Note, there is already a wrapper
class, Integer, in the Java application programmer’s interface (API) which is “useful when you need
to pass int values by reference” (Flanagan, 1996), but its value cannot be changed! There does not
seem to be any particular reason why Java could not have either by-reference or by-input-output
parameters although it might be better to call them “var” parameters, after Pascal, to avoid
confusion with other uses of the term “reference” in Java. The deletion of the address and pointer
operators, compared to C, was done on sound security grounds but does have the side-effect of
restricting the ways in which Java routines can output results.

Note that it is GenInt’s generatemethod not its constructor that sets the IntVar’s value. This has
to be the case because a particular GenIntmay be invoked many times and one IntVar may be used
for many purposes in a particular program.

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 200010

With these new generators, the n-queens program becomes:

The central step is still to choose a row number for a new queen and check that the constraints are
not violated. Now IntVar rows[i] is used to hold the row number and Valid is told to check that the
i th queen does not threaten any previously placed queens. Nq is a conjunction of n copies of this
central step. The QueenSuccess continuation prints out a solution. The n-queens code above plus
Valid and QueenSuccess are the only parts of the program that are unique to the n-queens problem.
This n-queens program is included as an appendix.

6. WORLD WIDE WEB SEARCHES
The main interest in Java is that it very suitable for internet applications, particularly those
involving the world wide web, and that it comes with a large application programmer’s interface
(API) containing many routines for that purpose. Java appletscan be embedded in hypertext pages.
Java programs are compiled into byte code and interpreters are widely available for many
computers and are built into most new web browsers.

The world wide web allows the publishing of pages written in hypertext markup language
(HTML). Such a page (or other material) can be found by its universal resource locator (URL) or
internet address. An HTML page can contain hyperlinks, i.e. URLs, pointing to other HTMLpages
and other types of material.

It is possible to program a collection of generators to assist in world wide web queries. For
example, GenURLsFromURLgenerates the URLs found in the page specified by a given URL, and
GenURLcontainsStringsucceeds if a page contains a given string and fails otherwise. Using these
generators a page url2 can be defined as “interesting” if it contains the string “biolog” (as in biology,
biological, biologist, ...) or if it contains a hyper-link to a page url3 which contains the string
“tRNA” (as in transfer RNA). The search starts from url1 which refers to a query for “dynamic
programming” through the AltaVista search engine (1996):

The class RefObj is a general mutable reference to an arbitrary object and generators can output
information through RefObj parameters such as url2 and url3.

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 11

The reader might quibble about the definition of interesting above but this is just an example! It
might have been expressed as follows in some hypothetical and suitably augmented version of
Prolog:

The Java version is more verbose due to the restrictions of Java syntax but there is a clear
correspondence between the two versions. The programmer of the Java version can also make full
use of the Java language, the Java program’s state and the Java API to program new generators and
to do further processing that might require imperative-style algorithms and data-structures on the
grounds of efficiency or of expressiveness.

7. CONCLUSION
Continuations and generators have been programmed in the object oriented programming language
Java. The technique provides a non-deterministic control mechanism which allows combinatorial
searches to be quickly programmed. Experiments with a set of generators oriented towards world
wide web applications show that sophisticated internet searches can be expressed in this style.

The use of predefined generators is akin to writing Prolog-like or predicate-logic based queries
and specifications, although it is somewhat more verbose due to the restrictions of Java syntax. On
the other hand, all the facilities of the imperative language Java, its state and its API are available
when a pure non-deterministic search is inefficient or inadequate.

Footnote: Since this paper was first written, Java 1.1 (Flanagan, 1997) has been released; it does
not involve any changes to the underlying Java virtual machine. Amongst other features, Java 1.1
contains inner classesand anonymous classeswhich would allow some of the Java code presented
in this paper to be shortened slightly. Various proposals also exist to extend the Java class and type
system, e.g. with polymorphism as in Pizza (Odersky and Wadler, 1997), which would facilitate the
use of techniques described here.

8. REFERENCES
ALLISON, L. (1990): Continuations implement generators and streams. Comp. Jrnl.33(5): 460-465.
AltaVista Search Engine (1996): Digital Equipment Corporation.

URL: http://www.altavista.com/ was http://altavista.digital.com/
BULHAK, A. (1996): On the simulation of postmodernism and mental debility using recursive transition networks. Dept.

of Computer Science, Monash Univ. TR 96/264.
URL:http://www.cs.monash.edu.au/cgi-bin/postmodern

FINLAY, A. and ALLISON, L. (1993): A correction to the denotational semantics for Prolog of Nicholson and Foo. ACM
Trans. Prog. Lang. & Sys.15(1) January: 206-208.

FLANAGAN, D. (1996, 1997): Java in a Nutshell.O’Reilly & Assoc. 2nd edition, Java 1.1: 1997.
FLOYD, R.W. (1967): Nondeterministic Algorithms. Jrnl. ACM14(2): 636-644.
HAYNES, C.T., FRIEDMANN, D.P. and WAND, M. (1986): Obtaining coroutines with continuations. Comp. Languages

11(3/4).
HUDAK, P., PEYTON JONES, S., WADLER, P., BOUTEL, B., FAIRBAIRN, J., FASEL, J., GUZMAN, M.M.,

HAMMOND, K., HUGHES, J., JOHNSSON, T., KIEBURTZ, D., NIKHIL, R., PARTIAN, W. and PETERSON, J.
(1992): Report on the Programming Language Haskell, version 1.2. Sigplan27(5) May.

LOKE, S.W., DAVISON, A. and STERLING, L. (1996): CIFI: An intelligent agent for citation finding on the world wide
web. Technical Report 96/4, Dept. Comp. Sci. Melbourne Univ.

MAZURKIEWICZ, A.W. (1971): Proving algorithms by tail functions. Inf. & Control 18: 220-226.

Generator and Search Objects in Java

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 200012

MILNE, R. and STRACHEY, C. (1976): A Theory of Programming Language Semantics(2 vols). Chapman & Hall.
NICHOLSON, T. and FOO, N. (1989): A denotational semantics for Prolog. ACM Trans. Prog. Lang. & Sys.11(4)

October: 650-665.
ODERSKY, M. and WADLER P. (1997): Pizza into Java: Translating theory into practice. Proc. 24th ACM Symp. on

Principles of Programming Languages (POPL) January.
STERLING, L. and SHAPIRO, E. (1986): The Art of Prolog.MIT Press.
STRACHEY, C. and WADSWORTH, C.P. (1974): Continuations: a mathematical semantics for handling full jumps. PRG-

11 Oxford University.

APPENDIX: N-QUEENS PROGRAM OF SECTION 5

BIOGRAPHICAL NOTES
Lloyd Allison is a reader in the School of Computer Science and Software Engineering at Monash
University.

He obtained a PhD in Computer Science at Manchester University in 1976 and has worked at
Melbourne University, the University of Western Australia, and now Monash.

His main professional interests are in algorithms and data structures, programming languages,
weird and otherwise, inductive inference and computing for molecular biology.

