COMPUTER SCIENCE

Generator and Search Objects in Java

Lloyd Allison

School of Computer Science
Monash University

Australia 3168
http://www.csse.monash.edu.au/

Generator classes are defined in the object oriented programming language Java
by using continuation-style programming. Generator objects are used to write
Prolog-like programs in Java to solve combinatorial constraint satisfaction
problems. A collection of generators oriented to world wide web applications is
demonstrated on searches for HTML pages.

Keywords: continuation, generator, constraint satisfaction problem,
combinatorial search, world wide web search, Java

1. INTRODUCTION

A continuation is a function (or procedure or method) used to represent a following computation.
Continuations arose in denotational semantics as a way of defining the meaning of jumps and othel
sequencers in imperative programming languages. Here they are used in the object orientec
programming language Java to implement combinatorial generators for constraint satisfaction
problems and to write Prolog-like searches for world wide web pages.

The easiest languages in which to do continuation style programming are the lazy functional
languages such as Haskell (Hudgkal, 1992). The applicative language Scheme (Hagtesl,

1986) even has continuations built into it as a predefined type. However, continuations
can also be programmed in an imperative language such as C or Pascal if it is possible to pass
procedure as a parameter. The object oriented language Java does not allow procedures &
parameters but references dbjectscan be passed as parameters and it is possible to define
generator and continuation classes. These classes can be conveniently used in a Java applicatic
program or in an applet, if a task includes a search for the solution of a combinatorial problem,
without having to switch to a non-deterministic language.

Continuations were first used to define jumps and other sequencers by Strachey and Wadswortt
(1974) and Milne (1976). Strachey and Wadsworth attribute the origin of the idea to Mazurkiewicz's
tail functions (Mazurkiewicz, 1971). Strachey, Wadsworth and Milne demonstrated that
continuations could define arbitrary control mechanisms in programming languages. Their power
has been used in semantics of Prolog (Nicholson and Foo, 1989; Finlay and Allison, 1993).

This paper demonstrates that continuations can be used in an object oriented programming
language such as Java. It uses the technique to implement Java classes that can be used to wr
Prolog-like programs in Java to solve combinatorial constraint problems and, by also making use of

Copyright© 2000, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

Manuscript received: August 1999
Associate Editor: Janet Smith

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 3

Generator and Search Objects in Java

Javas internet package, to perform world wide web searches providing an alternative to adding
web-awareness to a logic language as in Logiz\(Lokeet al, 1996).

2. CONTINUATIONS
This section describes continuations in the context of functional programming where they
developed; it can be skipped if the idea is famil&gction 3 describes continuations in Java.

A continuation is just a functiolm given to another functiohto continue or to follow on from
f. In some applications it can be thought of'ageturn-address plus suitable state information made
explicitly available tof:

datatype Cont = u = v
fun £ h x = h(g x)

f:Cont—= (t—v)

h:Cont

g:t—u

x:t {for some types t, u, v}

Note that the arromas in u-yv, constructs a function type which might be writterflasction(u)v
in some imperative languag&%e arrow is right associative so the parentheses in the typaof
be omitted. It is also common practice to omit parentheses in function applicatiogss imgtead
of g(x),unless they are necessary to override operator pridhig/functionf is aCurried function,
that is we writef h x rather thanf(h,x).

In the above artificial example, we think gfas the main body of Functionf does some
computationg, onx and passes the resultfts continuationh. The formal parametdr represents
whatever happens afterhence the term continuation. Given an actual continustidrkis there
fore a rather complex way of expressing the composikignF k can also be read forwards as “do
fand then d&” in contrast tdk.g“do g and then d&’. The full power of continuation programming
comes from the fact thétcan be reprogrammed to invoke its continuatiaero, once or several
times as it chooses, possibly in a data-dependenteagy

fhx=p(h(g x), hig’" x))

where p is typically some simple computation that collates the results of h. In the following sections,
logical disjunction is implemented by multiple uses of a continuation, the reason being that a
successful search might come from one or another lines of computation.

In many uses of continuations the typ@sdu are the same and then:

datatype Cont = t — Vv

f:Cont—t—v = Cont—Cont
h:Cont
£ h:Cont

In this casef applied to a continuation yields a continuation, the types just fall out thisakésh
is convenient if can be split intdl andf2 as inf h = f1(f2 h).This reads as “do f1 and then do (f2
and then do h)”.

One particular use of continuations is in denotational semantics (Milne and Stre@h@)to
define the semantics of imperative programming languages with jaihestate of an imperative
program is modelled by a tydgtate.Each command, of typ€md,in the imperative language
performs a state transitionhe environment, of typEny, holds information about variables eite
final output or answer of a program is modelled by the AmeThe meaning of commands is given

4 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

Generator and Search Objects in Java

by a functionC which takes the command being defined, an environment to map names onto
bindings, a continuation being what (normally) happens after the command, and the current state:

datatype Cont = State — Ans

C:Cmd — Env — Cont — State — Ans
=Cmd — Env — Cont — Cont

In particular
Clcmdl; cmd2] e ¢ s = Clemdl] e (Clecmd2] e ¢) s
C[goto L] e ¢ s = e[L] s

so

C[goto L; cmd2] e c s

Clgoto L] e (Clcmd2] e ¢)s

e[Lls -- cmd2 ignored

mn

The power of this form o€ is that a jump to a label, as above, can discard the continuation that
represents the normal sequential flow of execution and can instead execute another continuatior
which is bound to the label in the environment.

Note that a continuation is just a function used in a particularit\@ges not need to be a special
language mechanism.

Java does not allow procedures and functions, i.e. methods, to be passed as parameters ¢
procedures and functions. It does however allow objects, instances of classes, to be passed ¢
parameters. In what follows, generator and continuation objects are created and these have methoc
that behave in the same way as the continuations from denotational semantics.

3. CONTINUATIONS AND GENERATORS

The very ternobjectin “object oriented programming” tends to imply notions of a rather concrete
thing, probably with a state. On the other hand a pure function has no state. Functional
programming might model a parsér example, as a pure function from source language to parse
tree. It might be useful or necessary to define internal states for the parser but each state would b
a pure value and state transitions would be functions on these value.

Object oriented programming might model the parser as an object with state, having methods to
guery parts of the state and to advance the parsing process. It might alternatively concentrate on th
result of parsing, i.e. the parse tree, and define a class of parse trees having the parser buried in i
constructar

Generating solutions to a combinatorial constraint satisfaction problem is closely related to
parsing and indeed a grammar can be used to generate sentences of a language, for example to t
a compiler or even for the purposes of humour (Bulhak, 1996).

Continuations can be used in functional and imperative programming (Allison, 1990) to solve
combinatorial search problenmBypically there are constraints that a (partial) answer must satisfy;
often one talks of partial solutions which are not yet complete but which satisfy the constraints so
far and which may lead to one or more complete solutibhs. particular problem will imply
certain operators ageneratorsthat can be applied to extend or modify a partial solution. Basic
atomic generators can be put together in various combinations using operators togiermae
complex generators. Constraint satisfaction problems becofizaildiand require a search process
in situations where a valid solution can be easily recognised but the order in which the basic
generators need to be applied to produce such a solution is not easily deteFmasitliation can
be modelled by the following functional types:

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 5

Generator and Search Objects in Java

datatype Cont = State — State list

datatype Generator = Cont — State — State list
= Cont — Cont

A generator requires a continuation parameter to complete its branch of the/Aesoahe point in

a combinatorial search we have a partial solutidBtateand it may be possible to extend it into some
complete, final solutions i.e. &tate list,possibly emptyWe model this in Java by providing
interfaces that particular instancess#neratorand continuation&enContinuationmust implement:

public interface Generator
{ public void generate(GenContinuation c, State a);

public interface GenContinuation
{ public void continu(State a); }

Note thatcontinueis a reserved word in Java. Note also that we simply print solutions to the
problem, rather than returning lists of solutions in a data structure. If negedsarfinal
continuation that recognises valid solutions could place them in a Java data structure.
One of the simplest generators adds an integer literal to a partial solution:
class GenInt implements Generator
{ private int n;
public GenInt(int num) { n = num; }

public void generate(GenContinuation ¢, State a)
{ c.continu{(a.cons(n)); } // prepend n to a
}//GenInt

Consis a method that prepends a value to a State; the word is taken from the programming language
Lisp.

The logic programming language Prolog (Sterling and Shapiro, 1986) is based on first-order
predicate logic. It is found to be powerful in artificial intelligence and deductive database
applications. Predicate logic allows the high-level specification of solutions to many constraint
satisfaction problems. Prolog also provides a non-deterministic search mechdrssgives the
inspiration for some Java generators below

It is often necessary to apply tbenjunctionof two generators in sequende.invoke generators
gl andg2 and then continuation, invoke gl with the continuation formed frog2 andc:

class GenAnd implements Generator
{ private Generator gl, g2;

public GenAnd(Generator genl, Generator gen2)
{ gl = genl; g2 = gen2; }

public void generate(GenContinuation c, State a)
{ gl.generate(new GenCont (g2, c), a); }
}//GenAnd

class GenCont implements GenContinuation
{ private Generator g; private GenContinuation c;
public GenCont (Generator gen, GenContinuation con)
{ g=gen; c=con; }

public void continu(State a) { g.generate(c, a); }

}

The constructoGenConttakes a generator and a continuation and returns a continuation which
invokes the given generafqrassing it the given continuation as its paraméted.generatdails,
i.e. violates a constraint and is an unsuccessful search, it simply returns and does not invoke

6 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

Generator and Search Objects in Java

GenCont(g2,c).generat8imilarly if gl.generatesucceeds bug2.generatdails thenc.continuwill

not be invoked.
GenAndcan be used times by the Generat@enDowhich forms the n-fold conjunction of a

generator with itself:

class GenDo implements Generator
{ private Generator g;

public GenDo(int n, Generator gen)
{ if(n <= 0) g = new GenSuccess();
else if(n == 1) g = gen;
else // n>1
g = new GenAnd(gen, new GenDo(n-1, gen));
}

public void generate(GenContinuatién c, State a)
{ g.generate(c, a); }
}//GenbDo

class GenSuccess implements Generator
{ public void generate(GenContinuation c, State a)
{ c.continu(a); } // succeeded ... so far!
}

If there are zero generators to be composedsbyDo the result should obviously succeed,
continuing with the rest of the computation and the trivial gener@emSuccesss included for

this purpose.
To complement conjunction, the disjuncti@enOrof two generators succeeds if either of them

succeeds:

class GenOr implements Generator
{ private Generator gl, g2;

public GenOr (Generator genl, Generator gen2)
{ g1 = genl; g2 = gen2; }

public void generate(GenContinuation ¢, State a)
{ gl.generate(c, a);
g2.generate(c, a);
}
}//GenOr

Note that the continuation to GenOr is passed on twice, once td.generateand once to
g2.generate.GenOr is used to define alternative branches of a search process. Naturally all

solutions found by1 or by g2 appear in the prograsmbutput.
Further generators can be defined sucBasChoicavhich is the n-fold disjunction dbenint;

it tries choices of integer literals betwekandn:

class GenChoice implements Generator
{ private Generator g;

public GenChoice(int n) // 1 | 2 | ... | n
{ if(n <= 0) g = new GenFail();
else if(n==1) g = new GenLiteral(l);
else // n>1
g=new GenOr (new GenChoice(n-1), new GenLiteral(n));

}

public void generate(GenContinuation c, State a)
{ g.generate(c, a); }
}//GenChoice

class GenFail implements Generator
{ public void generate(GenContinuation c, State a)
{ } //do nothing, prune branch of search tree

}

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

Generator and Search Objects in Java

A choice between zero alternatives should obviously fail, i.e. not continu&eartehilis included
for this purpose.

As described earlien line of computation may lead2eio or more solutions. Some generators
test constraints of a particular search problem and can be thougffittefgghat is they fail (return
immediately) if their constraints are violated and otherwise succeed (continue). Failure pfrunes of
a branch of the search tree.

4. N-QUEENS

The n-queens problem is to place n queens oxmcmess board in such a way that no two queens

threaten each othelt is a classic example of a constraint satisfaction problem, often used for

illustrative purposes as it is both an interesting puzzle and easy to describe. Opwiouslp

gueens can be on the same row or column and therefore a solution can be represented by .

permutation of the row-numbers amongst the columns. Not all permutations correspond to solutions

of the n-queens problem however because the constraints on diagonals also have to be checked.
Solving the n-queens problem in a non-deterministic language (Floyd, 1967) is simplicity itself:

state := nil; // empty board
for 1 to n do // each queen
{ state := cons(choose(n), state);
if state is not valid then fail
}

Failure causes backtracking through other sequences of choices.

The classes defined in the previous section can now be used to solve the n-queens problem ir
Java.The central step is to choose a row for the queen on the current column and then to check that
it does not threaten any previously placed queen:

new GenAnd(new GenChoice(n), // 1..n
new Valid())

Recall thatGenChoice(n)s the disjunction oGGenlint(1)to Genlint(n).
An n-fold conjunction(GenDo)of the central step will successfully place all n queens, if this is
possible. First, the generatog is constructed which will seek solutions:

// build the generator:
Generator ng =
new GenDo (n,
new GenAnd(new GenChoice(n),
new Valid()));

// invoke it:
ng.generate(new Success (), new State());

Whenng has been constructed, gsneratemethod is invoked with uccessontinuation and an
initial, emptyState.The resulting Java program is more verbose than the non-deterministic one but
matches its structure closely

For this problem th&tateclass is implemented as a linked list which is easily programmed in
Java.The final continuation clasSuccesssimply prints out the state. Details of checking the
validity of an n-queens solution are omitted.

8 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

Generator and Search Objects in Java

5. USING THE JAVA PROGRAM'S STATE

The previous implementation of generators and continuations in Java has the drawlstckeikat
compiled into the definitions of the various generator classes. For the n-queens problem, and for
several other combinatorial problems, a simple linked list is a suitable implementation of the state
but most constraint satisfaction problems will require quiferint definitions. Java classes cannot

be parameterised on types or made generic so recompilation would be necessary if the state wer
changed.

One possible solution would be to make the state an interface specification or template which
instances of state could implement but it is not at all clear what something as general as a “state’
should specify in general over and above the most general Jav®b]ast

Another possibility is to use the state of the Java program (state as in imperative programming)
to hold the components of the solutions to the probléris involves dropping th8tateparameter
of thegenerateandcontinumethods:

public interface Generator
{ public void generate(GenContinuation c); }

public interface GenContinuation
{ public void continu(); }

Apart from deleting th&tateparameters, no change is required to the central infrastructure classes
such as GenAndand GenOr However those generators that manipulate the (partial) problem
solution, such asGenlnt,do require major changes because they need to communicate with each
other They previously used th&tate parameters of their generate methods to do figir
constructors now need to be made aware of which variables in the Java state will be used for
communication. For exampl&genint.generateeeds to place an integer value in an integer variable:

class GenInt implements Generator
{ private IntVar iv; private int val;

public GenInt(IntVar i, int n)
{ iv=i; val=n; }

public void generate(GenContinuation c)
{ iv.set(val); c.continu(); }

}

Unfortunately forGenlnt, all Java parameters of basic types are passed by-value; there are no
refelence parameters Javain the usual sense of the terirherefore there is no way in which
Genlnt.generatean alter arnt parameter given to it or to the constructoGahint.Consequently
a mutabldntVar wrapper class havingsetmethod must be used. Note, there is already a wrapper
class|ntegerin the Java application programrwinterface (API) which is “useful when you need
to pass int values by reference” (Flanagan, 1996), but its value cannot be cAdregedioes not
seem to be any particular reason why Java could not have either by-reference or by-input-output
parameters although it might be better to call them “var” parameters, after Pascal, to avoid
confusion with other uses of the term “reference” in Jabe. deletion of the address and pointer
operators, compared to C, was done on sound security grounds but does have tfecsidke-ef
restricting the ways in which Java routines can output results.

Note that it iSGenints generatenethod not its constructor that sets l&ar’s value This has
to be the case because a partic@anintmay be invoked many times and dn&/ar may be used
for many purposes in a particular program.

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 9

Generator and Search Objects in Java

With these new generators, the n-queens program becomes:
IntVar (] rows = new IntVar([n]; // create nxn board
for(int i=0; i < n; i++) rows[i] = new IntVar(0);
Generator ng = new GenSuccess();

for(int i=n-1; i >= 0; i--)
ng = new GenAnd(
new GenaAnd (new GenChoice(rows[i], n),
new Valid(rows, 1)),
ng);

ng.generate(new QueenSuccess(rows));

The central step is still to choose a row number for a new queen and check that the constraints ar
not violated. NowIntVar rowsJi] is used to hold the row number avalid is told to check that the

i™ queen does not threaten any previously placed qubkenis.a conjunction ofi copies of this

central stepThe QueenSuccesontinuation prints out a solutiofhe n-queens code above plus

Valid andQueenSuccesse the only parts of the program that are unique to the n-queens problem.
This n-queens program is included as an appendix.

6. WORLD WIDE WEB SEARCHES

The main interest in Java is that it very suitable for internet applications, particularly those
involving the world wide web, and that it comes with @éaapplication programmarinterface

(API) containing many routines for that purpose. Jgwaletscan be embedded in hypertext pages.
Java programs are compiled into byte code and interpreters are widely available for many
computers and are built into most new web browsers.

The world wide web allows the publishing pageswritten in hypertext markup language
(HTML). Such a page (or other material) can be found by its universal resource locator (URL) or
internet addres&n HTML page can contain hyperlinks, i.e. URLSs, pointing to other Hdges
and other types of material.

It is possible to program a collection of generators to assist in world wide web queries. For
example GenURLsFomURLgenerates the URLs found in the page specified by a given URL, and
GenURLcontainsStringucceeds if a page contains a given string and fails otherwise. Using these
generators a pagel2 can be defined as “interesting” if it contains the string “biolog” (as in bigplogy
biological, biologist, ...) or if it contains a hypléak to a pageurl3 which contains the string
“tRNA” (as in transfer RNA).The search starts fromrll which refers to a query for “dynamic
programming” through thaltaVista search engine (1996):

RefObj urll, url2, url3;

urll.set(new URL("http://altavista...cgi-bin/query?" +
", ..&g=dynamic+programming")

Generator interesting =
GenOr (new GenURLcontainsString(url2, "biolog"),
new GenAnd (new GenURLsFromURL (url2, url3),
new GenURLcontainsString(url3, "tRNA*)))

Generator gu =
new GenAnd (new GenURLsFromURL (urll, url2),
interesting);

gu.generate(new PrintURL (url2));

The classRefObjis a general mutable reference to an arbitrary object and generators can output
information through RefObj parameters suclud® andurl3.

10 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

Generator and Search Objects in Java

The reader might quibble about the definition of interesting above but this is just an example! It
might have been expressed as follows in some hypothetical and suitably augmented version of
Prolog:

interesting (URL2) :- genURLcontainsString(URL2, "biolog") .

interesting (URL2) :- genURLSFromURL(URL2,URL3),
genURLcontainsString (URL3, "tRNA").

?- url("http://altavista...cgi-bin/query?" +
"...&g=dynamic+programming", URL1),
genURLsFromURL (URL1,URL2), interesting(URL2).

The Java version is more verbose due to the restrictions of Java syntax but there is a cleal
correspondence between the two versidhg programmer of the Java version can also make full
use of the Java language, the Java progratate and the Ja¥#®l to program new generators and

to do further processing that might require imperative-style algorithms and data-structures on the
grounds of dfciency or of expressiveness.

7. CONCLUSION

Continuations and generators have been programmed in the object oriented programming languag
Java.The technique provides a non-deterministic control mechanism which allows combinatorial
searches to be quickly programmed. Experiments with a set of generators oriented towards world
wide web applications show that sophisticated internet searches can be expressed in this style.

The use of predefined generators is akin to writing Prolog-like or predicate-logic based queries
and specifications, although it is somewhat more verbose due to the restrictions of Java syntax. Or
the other hand, all the facilities of the imperative language Java, its state ARt are available
when a pure non-deterministic search isfineht or inadequate.

Footnote: Since this paper was first written, Java 1.1 (Flanagan, 1997) has been released; it doe
not involve any changes to the underlying Java virtual macAmengst other features, Java 1.1
containgnner classesndanonymous classeghich would allow some of the Java code presented
in this paper to be shortened slightfariousproposalsalso exist to extend the Java class and type
system, e.g. with polymorphism as in Pizza (Oderskwsadler 1997), which would facilitate the
use of techniques described here.

8. REFERENCES

ALLISON, L. (1990): Continuations implement generators and stre@omap. Jrnl.33(5): 460-465.

AltaVista Search Engine (1996): Digital Equipment Corporation.

URL: http://wwwaltavista.com/ was http://altavista.digital.com/

BULHAK, A. (1996): On the simulation of postmodernism and mental debility using recursive transition networks. Dept.
of Computer Science, Monash UniR 96/264.

URL:http://www.cs.monash.edu.au/cgi-bin/postmodern

FINLAY, A. andALLISON, L. (1993):A correction to the denotational semantics for Prolog of Nicholson andARid.
Trans. Pog. Lang. & Sysl5(1) January: 206-208.

FLANAGAN, D. (1996, 1997)Java in a NutshellO'Reilly & Assoc. 2nd edition, Java 1.1: 1997.

FLOYD, R.W. (1967): Nondeterministilgorithms.Jrnl. ACM 14(2): 636-644.

HAYNES, C.T, FRIEDMANN, D.P andWAND, M. (1986): Obtaining coroutines with continuatio@mp. Languages
11(3/4).

HUDAK, P, PEYTON JONES, S.,WADLER, P, BOUTEL, B., RAIRBAIRN, J., FASEL, J., GUZMAN, M.M.,
HAMMOND, K., HUGHES, J., JOHNSSON,, KIEBURTZ, D., NIKHIL, R., FARTIAN, W. and PETERSON, J.
(1992): Report on the Programming Language Haskell, versioSig@an27(5) May

LOKE, S.W, DAVISON,A. and STERLING, L. (1996): CIFAn intelligent agent for citation finding on the world wide
web.Technical Report 96/4, Dept. Comp. Sci. Melbourne Univ

MAZURKIEWICZ, A.W. (1971): Proving algorithms by tail functiorief. & Control 18: 220-226.

Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000 11

Generator and Search Objects in Java

MILNE, R. and STRACHEYC. (1976):A Theoly of Pogramming Language Semanti vols). Chapman & Hall.

NICHOLSON,T. and FOO, N. (1989A denotational semantics for Prolo§CM Trans. Pog. Lang. & Sys11(4)
October: 650-665.

ODERSKY, M. andWADLER P. (1997): Pizza into Javdranslating theory into practice. Proc. 2&48M Symp. on
Principles of Programming Languages (POPL) January

STERLING, L. and SHAPIRO, E. (1986)heArt of Prolog. MIT Press.

STRACHEY, C. andWADSWORTH, C.P (1974): Continuations: a mathematical semantics for handling full jumps. PRG-
11 Oxford University

APPENDIX: N-QUEENS PROGRAM OF SECTION 5

// Place n Queens on an nxn chess board so that no two Queens threaten each
// other. There must be exactly one Queen per row, so it is sufficient to
// know the row number of the Queen on each column.

public class Queens
{ public static void main(String(] args)

{ int n = Integer.parselnt(args(0])); // command line:- how many Queens?
IntVar [] rows = new IntVar(n]; // create nxn board
for(int i=0; i < n; i++) rows[i] = new IntVar(0);

// build the n-Queens solver:
Generator ng = new GenSuccess();

for(int i=n-1; i >= 0; i--) // for 1=l..n
ng = new GenAnd(
new GenAnd(new GenInts(rows([i], n), /7 try
new Valid(rows, 1)), /7 test
ng);

// now run it:
ng.generate(new QueenSuccess(rows));
}

}//Queens

class Valid implements Generator // Filter out violations
{ private IntVar rows[]; private int col;

public Valid(IntVar[] r, int ¢) { rows = r; col = ¢; }

public void generate(GenContinuation c)
{ boolean clash = false; int rC = rows(col].value();

for(int i=0; i < -col; i++) // test for queen threats
{ int rI = rows[i].value();
if(rI == rC || rI == rC-col+i || rI == rC+col-i) clash = true;
)
if(! clash) c.continu(); // else fail, i.e. prune search tree
}
}//valid

class QueenSuccess implements GenContinuation // process a solution
{ private IntVar[] rows;

Queensuccess (IntVar [] r) (rows = r; }
public void continu() // print the solution
{ for(int i=0; i < rows.length; i++)
System.out.print(rows([i].value()+" ");
System.out.println();

}
}//QueensSuccess

BIOGRAPHICAL NOTES
Lloyd Allison is a eader in the School of Computer Science and Saft&agineering at Monash
University

He obtained a PhD in Computer Science at Manchester University in 1976 and has worked at
Melbourne Universitythe University of BsternAustralia, and now Monash.

His main pofessional integsts ae in algorithms and data stctures, ppgramming languages,
weird and othewise, inductive infemce and computing for molecular biology

12 Journal of Research and Practice in Information Technology, Vol. 32, No. 1, February 2000

