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Abstract

We discuss the problem of producing an epitome, or brief summary, of a Bayesian
posterior distribution - and then investigate a general solution based on the Mini-
mum Message Length (MML) principle. Clearly, the optimal criterion for choosing
such an epitome is determined by the epitome’s intended use. The interesting gen-
eral case is where this use is unknown since, in order to be practical, the choice of
epitome criterion becomes subjective. We identify a number of desirable properties
that an epitome could have - facilitation of point estimation, human comprehension,
and fast approximation of posterior expectations. We call these the properties of
Bayesian Posterior Comprehension and show that the Minimum Message Length
principle can be viewed as an epitome criterion that produces epitomes having
these properties. We then present and extend Message from Monte Carlo as a
means for constructing instantaneous Minimum Message Length codebooks (and
epitomes) using Markov Chain Monte Carlo methods. The Message from Monte
Carlo methodology is illustrated for binary regression, generalised linear model,
and multiple change-point problems.

Keywords: Bayesian, Minimum Message Length, MML, MCMC, RJMCMC, Message from
Monte Carlo, MMC, posterior summary, epitome, Bayesian Posterior Comprehension

1 Introduction

The Minimum Message Length (MML) principle [Wallace and Boulton, 1968, 1975, Wal-
lace and Freeman, 1987, Wallace and Dowe, 1999] is often considered to be a Bayesian
method for model class selection and (invariant) point estimation. This is apparently due
to the method of the widely used MML87 approximation [Wallace and Freeman, 1987].
Such a description is a generalisation that does not hold for all MML approximations
since for strict MML [Wallace and Boulton, 1975] [Wallace and Freeman, 1987, page 242]
[Wallace and Dowe, 1999], and some other approximations (including those we present in
this paper), the notion of model selection does not exist.
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A more general description of MML methods is that they give an invariant criterion
for selecting a countable set of weighted point estimates from a Bayesian posterior distri-
bution/density. The derivation and definition of the “objective” functions found in the
many MML approximations are motivated by ideas from information theory and Bayesian
statistics. What all of the MML approximations have in common is that they attempt
to estimate the codebook which minimises the expected length of a special1 two-part
message encoding the point estimate and data.

The MML principle complements standard Bayesian methods. It provides an invariant
and “objective” means to construct an epitome, or brief summary, of a posterior distri-
bution. Such an epitome can be used for point estimation, human comprehension and for
fast approximation of posterior expectations. In this paper we investigate a Markov Chain
Monte Carlo-based methodology called Message from Monte Carlo (MMC) [Fitzgibbon,
Dowe, and Allison, 2002a,b] that is being developed for constructing MML epitomes. The
contribution of this paper is in the refinement of the MMC method - we use more accurate
approximations, give extensions to the algorithms, and investigate the behaviour of the
method on new problems.

In the first section we briefly define the problem of constructing an epitome of a pos-
terior distribution. We then discuss the use of the MML instantaneous codebook as an
epitome that has desirable properties which we describe as Bayesian Posterior Compre-
hension. In Section 3 we introduce elements of the Message from Monte Carlo (MMC)
methodology. In Section 4 we give an MMC algorithm suitable for unimodal likelihood
functions of fixed dimension. The algorithm is demonstrated for parameter estimation in
a binomial regression problem and link selection in a generalised linear model. Section 5
briefly discusses an algorithm suitable for multimodal likelihood functions of fixed dimen-
sion. An algorithm for variable dimension posterior distributions is given in Section 6
and demonstrated using a multiple change-point estimation problem and synthetic data.
Further work is discussed in Section 7, and the conclusion can be found in Section 8.

2 Bayesian Posterior Comprehension

Suppose we wish to construct an epitome, or brief summary, of a posterior distribution
that could be used as a substitute for the full posterior distribution for all subsequent
analyses. A general set of properties that we might reasonably expect from such an
epitome are the facilitation of:

1. Point estimation.

2. Human comprehension (i.e., human insight and understanding).

3. Approximation of posterior expectations.

In this paper we will refer to these properties as the properties of Bayesian Posterior
Comprehension (BPC). For an epitome with BPC properties to be of any use, it must

1The two-part messages are special in that, of the class of two-part messages, there is purposely an
inefficiency in the second part of the message. The inefficiency arises because each entry in the codebook
can be used to encode any data, not just the data that it is optimal for.
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contain as much information about the posterior distribution as possible. We note that we
have ruled out choosing the epitome criterion on a case by case basis by requiring that the
epitome be suitable for all subsequent analyses. Otherwise we would choose the epitome
criterion with minimum expected loss given time, computation and other constraints.

An epitome could take many forms, therefore we must first settle representational
issues. Three alternative representations that could be considered are:

1. Approximate the posterior distribution by fitting a parametric distribution to it.

2. Sample from the posterior distribution - the sample is then the epitome.

3. Choose a small weighted subset of the parameter space where the weights somehow
represent the goodness of each estimate.

The first representational option could be the most succinct and easily interpreted by
an operator for many posterior distributions. However, there would be other more com-
plicated posterior distributions such as that for a non-trivial change-point problem where
the epitome would be quite complicated and difficult to comprehend by a human. This
would therefore violate the second property of BPC (human comprehension). Facilitation
of the third property of BPC may also be difficult.

Representational option number two (sampling) is now a routine part of Bayesian in-
ference due to Markov Chain Monte Carlo methods [Gilks, Richardson, and Spiegelhalter,
1996] but is not as succinct a representation as we would like. This affects the human com-
prehension property and also the computation time required for approximating posterior
expectations.

The third representation is attractive because if the set of estimates and weights
are chosen correctly then it can fulfill the requirements of BPC. We will require that
the weights assigned to each estimate somehow correspond to the posterior probability
associated with the estimate. Therefore we seek a weighted subset of the parameter space:

ε = {(θ1, w1), ..., (θK , wK)} (1)

where the θi are associated with good posterior probability mass and their weights repre-
sent their goodness (a function of their probability mass) as an estimate. Such an epitome
can be used for point estimation - if we are interested in inferring the single best model
then we can use the θi with the greatest weight. If the size of the set is small (i.e., K
is small) then it can be used for posterior comprehension, as a human could inspect the
set of estimates and their weights to get an understanding, and overview, of the posterior
distribution. Posterior expectations could be approximated by normalising the weights
and treating the set as a distribution.

Choosing a weighted set of estimates having BPC properties is a multi-objective prob-
lem. The size of the set will have a significant impact on how the conflicting BPC objec-
tives are satisfied. If the set is too small then approximated posterior expectations will be
poor and human comprehension may also suffer. If it is too large then approximated pos-
terior expectations will require more computation time and human comprehension may
again suffer.

One Bayesian approach to BPC where the parameter space is a union of subspaces of
differing dimension (variable dimension posterior) would be to return as the epitome, the
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mode from each subspace with a weight equal to the posterior probability of the subspace.
This would be less than ideal when the posterior distribution contains a multimodal
subspace, since important parts of the posterior may not be represented in the epitome.
Another problem with this approach is that the weights can be misleading since it is
possible that a subspace containing a large amount of posterior probability also contains
a mode that lies in an area of relatively poor posterior probability mass.

An approach that meets some of the requirements of BPC is Occam’s Window (OW)
[Madigan and Raftery, 1994, Raftery, Madigan, and Hoeting, 1997]. The Occam’s Win-
dow algorithm was devised primarily to allow for fast Bayesian Model Averaging. The
algorithm is based on selecting a small set of subspaces from the parameter space by using
posterior sampling. The strategy is not ideally suited for BPC, since in terms of point
estimates, it would suffer from the same problems discussed in the previous paragraph.

[Wallace and Freeman, 1987, Wallace and Dowe, 1999, Wallace and Boulton, 1975,
1968]

The Minimum Message Length (MML) principle, which was briefly discussed in the
introduction, can be used for constructing a BPC epitome. MML methods attempt to
estimate a codebook - consisting of a countable set of point estimates, θi, and their
quasi-prior probabilities, pi. The definition of this set is defined, in information-theoretic
terms, as the codebook which minimises the expected length of a special two-part message
encoding the point estimate and data [Wallace and Freeman, 1987, Wallace and Dowe,
1999, Wallace and Boulton, 1975, 1968]. We assume that there exists a sender and a
receiver that wish to communicate the observed data over a noiseless coding channel and
that they share the codebook. Coding theory tells us that an event with probability p
can be encoded in a message with length − log p nits using2 an ideal Shannon code. So in
theory, the sender can transmit some observed data to the receiver in a two part message.
In the first part, the sender transmits a codeword corresponding to a point estimate from
the codebook. This requires a message of length − log pi nits. The sender then transmits
the data encoded using the (already) stated estimate in the second part. This requires a
message of length − log f(x|θi) nits, where f(.|.) is the usual statistical likelihood function.
Therefore the total message length (MessLen) of the transmission encoding an hypothesis,
θi, and the data, x, is

MessLen(θi, x) = − log pi − log f(x|θi) (2)

We expect the sender to transmit the data using the estimate from the codebook that
has the minimum message length (i.e. argminθiMessLen(θi, x)).

In order to minimise the length of these two-part messages on average, we seek the
codebook that has minimum expected message length. This creates a trade-off between
model complexity and goodness of fit. For example, if you increase the number of entries
in the codebook then the expected length of the first part of the message increases (but
the expected length of the second part encoding the data decreases). If you decrease the
number of entries in the codebook then you get the opposite effect3.

2If we use base-2 logarithms then the message length is measured in bits. Throughout the paper we
use natural logarithms, so the message length is measured in loge 2 bits, or nits [Boulton and Wallace,
1970].

3Assuming that the codebook entries are optimal for the given codebook size.
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To strictly minimise the expected message length one must create a codebook that can
be used to encode any data from the dataspace. This is not computationally practical as a
general method of inference (see, e.g., [Farr and Wallace, 2002]). In practice, most MML
approximations only attempt to estimate the entries of the codebook that are close to
the minimum message length. It is this small, instantaneous, codebook that corresponds
to an epitome that has the BPC properties. The weights in the MML epitome can be
calculated by converting from message lengths to (unnormalised) probabilities - i.e., by
taking the inverse log (antilog) of the negative message length

ε = {(θ1, antilog(−MessLen(θ1, x))), ..., (θK , antilog(−MessLen(θK , x)))} (3)

We note that this MML epitome is a function of the MML codebook and the observed
data (entering through the message length). In the following sections we describe how to
create such codebooks using a recent methodology called Message from Monte Carlo. We
also illustrate the use of the method with a variety of examples so that the reader may
get a feel for the use of the MML instantaneous codebook.

3 Message from Monte Carlo

In previous work [Fitzgibbon, Dowe, and Allison, 2002b,a] we have presented the Message
from Monte Carlo (MMC) methodology, a general methodology for performing minimum
message length inference using posterior sampling and Monte Carlo integration. In this
section we describe the basic elements of the Message from Monte Carlo methodology.
These elements will be used in the algorithms given in the following sections.

The basic idea is to partition a sample from the posterior distribution of the parameters
into uncertainty regions representing entries in the MML instantaneous codebook. Each
region has a point estimate which characterizes the models in the region. The point
estimate is chosen as the minimum prior expected Kullback-Leibler distance estimate
over the region. The regions are chosen so that the models contained within a region are
similar in likelihood and Kullback-Leibler distance (to the point estimate).

Each region also has an associated message length which can be considered as the
negative logarithm of the weight attributed to the region. The posterior epitome is the
set of point estimates (one for each region) weighted by the antilog of the negative message
length.

The message length approximation that is generally used in MMC is Dowe’s MMLD
minimum message length approximation [Fitzgibbon, Dowe, and Allison, 2002a, section
2.4]. Given an uncertainty region of the parameter space, R, prior distribution, h(θ), and
likelihood function, f(x|θ), the message length of the region, R, is

MMLD MessLen = − log

(∫
R

h(θ) dθ

)
−
∫
R
h(θ) · log f(x|θ) dθ∫

R
h(θ) dθ

(4)

for continuous parameter space, or

MMLD MessLen = − log

(∑
θ∈R

h(θ)

)
−
∑

θ∈R h(θ) · log f(x|θ)∑
θ∈R h(θ)

(5)
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for discrete parameter spaces4.
The MMLD message length equation can be seen to contain two terms. The first term

is the negative logarithm of the integral of the prior over the region. It approximates the
length of the first part of the MML message (i.e. − log pi) from Equation 3. The second
term is the prior expected negative logarithm of the likelihood function over the region.
This approximates the MML message second part and is an average because we do not
know the true estimate used in the first part. A shorter message length is to be preferred
and involves a trade-off between the first and second terms. Consider a region growing
down from the mode in a unimodal likelihood function. As the region grows the first term
will decrease (as the integral of the prior increases) but the second term will increase (as
the likelihood of the models added to the region decreases). The MMLD message length
attempts to take into account the probability mass associated with the region surrounding
a point estimate (rather than the point estimate’s density for example).

To calculate the MMLD message length we use importance sampling and Monte Carlo
integration. We sample from the posterior distribution of the parameters

S = {θt : t = 1, ..., N} (6)

and then choose a subset of this sample, Q, to implicitly define the uncertainty region,
R. The first part of the message length can then be approximated by

MMC 1st Part ≈ − log

(
1
N

∑
θ∈Q h(θ)I(θ)−1

1
N

∑
θ∈S h(θ)I(θ)−1

)
= − log

(∑
θ∈Q f(x|θ)−1∑
θ∈S f(x|θ)−1

)
(7)

where I(.) is the importance sampling distribution (here we use the posterior, I(θ) ∝
h(θ)f(x|θ)). This estimate does not require that the prior, h(.), or the importance sam-
pling distribution be normalised.

The second part is approximated using

MMC 2nd Part ≈ −
∑

θ∈Q h(θ)I(θ)−1 log f(x|θ)∑
θ∈Q h(θ)I(θ)−1

= −
∑

θ∈Q f(x|θ)−1 log f(x|θ)∑
θ∈Q f(x|θ)−1

(8)

These estimates allow the message length to be approximated for some Q. We now
discuss how to select the Q that minimises the message length. We first note that if we
attempt to minimise Equation 4 we get the following boundary rule

− log f(x|θ)
∣∣∣
θ∈∂R

= −
∫
R
h(θ) log f(x|θ) dθ∫

R
h(θ) dθ

+ 1 (9)

where the boundary, ∂R, of R, is an iso-likelihood contour of f . In other words, the values
of f(x|θ) and of log f(x|θ) are constant on ∂R. This boundary rule states that for the
region which minimises the message length, the negative log-likelihood at the boundary
of R is equal to the prior expected negative log-likelihood over the region plus one. The
right hand side can be approximated using Equation 8.

4We could also have parameter spaces with both continuous and discrete parameters, and of varying
dimension.
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For the discrete version of MMLD (Equation 5) the boundary rule (Equation 9) is
only an approximation and has the following error

err(θ′) = 1−
∑

θ∈R h(θ) + h(θ′)

h(θ′)
log

∑
θ∈R h(θ) + h(θ′)∑

θ∈R h(θ)
(10)

which involves only the prior.
Since the posterior sampling process has discretised the space we will need to include

the err term for both discrete and continuous parameter spaces. We can estimate the err
term using

err(θ′) ≈ 1−
∑

θ∈Q f(x|θ)−1 + f(x|θ′)−1

f(x|θ′)−1
log

(∑
θ∈Q f(x|θ)−1 + f(x|θ′)−1∑

θ∈Q f(x|θ)−1

)
(11)

Due to the use of importance sampling the prior terms have cancelled and the estimate
does not directly involve the prior. Intuitively we see that err is largest when Q is small
and therefore err will have the largest effect when the region is initially being formed.

Selection of the optimal region is simple in the unimodal likelihood case since we
can order the sample in descending order of likelihood, then start at the element with
maximum likelihood and continue to grow the region accepting models into the region
that pass the boundary rule test

θ ∈ Q iff − log f(x|θ) ≤ −
∑

θ∈Q log f(x|θ)f(x|θ)−1∑
θ∈Q f(x|θ)−1

+ 1− err(θ) (12)

Such an algorithm is given in the next section. This idea can be similarly extended to the
multimodal likelihood case by using order statistics to restrict the regions to be simply
connected (briefly discussed in Section 5). For variable dimension posteriors we need
a different strategy. We must ensure that regions contain models that are close to the
point estimate in Kullback-Leibler distance. This is discussed, and an algorithm given, in
Section 6. Now we briefly discuss how to choose the point estimate for a region.

3.1 The Point Estimate

Once the region that minimises the message length is found we need to find a point esti-
mate for the region. Staying true to the compact coding approach we use the minimum
prior expected Kullback-Leibler distance estimate since this corresponds to the MMLA
estimate (see [Fitzgibbon, Dowe, and Allison, 2002a][section 2.4.1]). This estimate repre-
sents a compromise between all of the models in the region and can be considered to be
a characteristic model that summarises the region. The prior expected Kullback-Leibler
(EKL) distance is

Eh(θ)

[
KL(θ, θ̂)

]
=

∫
R

h(θ)KL(θ, θ̂) dθ (13)

≈
∑

θ∈Q f(x|θ)−1KL(θ, θ̂)∑
θ∈Q f(x|θ)−1

(14)
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The MML estimate is the θ̂ that gives the minimum EKL distance

θ̂ = argminθ̂∈REh(θ)

[
KL(θ, θ̂)

]
(15)

This estimate could be found by simulation (see, e.g. [Dowe, Baxter, Oliver, and Wal-
lace, 1998] - note that they use the posterior expectation). It could also be found directly
using Newton-Raphson type algorithms (as used in the next section). Both of these re-
quire that we know the parametric form of the estimate - making them less desireable for
use with variable dimension posteriors. An alternative that does not have such a require-
ment is to find the element of Q that has the minimum EKL distance. This algorithm was
used in the MMC algorithm from [Fitzgibbon, Dowe, and Allison, 2002a][section 3.4]. An

exhaustive search (i.e. argminθ̂∈QEh(θ)

[
KL(θ, θ̂)

]
), using Equation 14, requires quadratic

time in |Q| although simple strategies can be employed to reduce this considerably.

In practice it is often beneficial to use the posterior expected Kullback-Leibler distance

Eh(θ)f(x|θ)

[
KL(θ, θ̂)

]
=

∫
R
h(θ)f(x|θ)KL(θ, θ̂) dθ∫

R
h(θ)f(x|θ) dθ

(16)

≈ 1

|Q|
∑
θ∈Q

KL(θ, θ̂) (17)

since the Monte Carlo estimate is better behaved.

4 Unimodal Likelihood Function

This section describes an MMC algorithm suitable for problems where the likelihood
function is unimodal and of fixed dimension. A simple algorithm for finding the region
with minimum message length is described, along with a Newton-Raphson algorithm for
finding the point estimate.

For the unimodal likelihood function case the minimising MMLD region can be found
using Algorithm 1. This algorithm is based on Algorithm 1 from [Fitzgibbon, Dowe,
and Allison, 2002a, page 12] but has been modified to use the more accurate message
length approximation described in the previous section. The algorithm is fast and efficient
requiring a single pass through the sample. It produces a single region.

Choosing the point estimate can be more difficult than finding the region. For con-
tinuous parameter spaces of fixed dimension the Newton-Raphson algorithm is suitable.
The Newton-Raphson method requires an initial estimate, θ(0), for which we can use the
element of the sample with maximum likelihood. Based on Equation 14, and using the
notation θ̂ = (ϑ̂1, ..., ϑ̂d), each iteration we update θ̂(k+1) = θ̂(k) + dθ̂(k) by solving the
following linear system for dθ̂(k):

J × dθ̂(k) = −r (18)
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Algorithm 1. Pseudo-code for optimising the MMLD message length in the unimodal
likelihood case. The algorithm is given as pseudo-code only and in practice extra care
would be taken in its implementation to avoid numerical problems.

sample from the posterior distribution S = {θt : t = 1, ..., N}
sort the sample such that f(x|θt) ≥ f(x|θt+1)
1st numer ← f(x|θ0)−1

1st denom ←
∑

θ∈S f(x|θ)−1

2nd numer ← −f(x|θ0)−1 × log f(x|θ0)
2nd denom ← f(x|θ0)−1

2nd length ← 2nd numer / 2nd denom
Q ← {θ0}
i ← 1
while (i < N)

corr ← 1st numer+f(x|θi)−1

f(x|θi)−1 log
(

1st numer+f(x|θi)−1

1st numer

)
if (− log f(x|θi) ≤ 2nd length + corr) then

1st numer ← 1st numer +f(x|θi)−1

2nd numer ← 2nd numer −f(x|θi)−1 × log f(x|θi)
2nd denom ← 2nd denom + f(x|θi)−1

2nd length ← 2nd numer / 2nd denom
Q ← Q ∪ {θi}

end
i ← i+ 1

end

end

J =


∑

θ∈Q f(x|θ)−1
(
∂2KL(θ,θ̂)

∂ϑ̂1∂ϑ̂1

∣∣∣
θ̂(k)

)
· · ·

∑
θ∈Q f(x|θ)−1

(
∂2KL(θ,θ̂)

∂ϑ̂1∂ϑ̂d

∣∣∣
θ̂(k)

)
...

. . .
...∑

θ∈Q f(x|θ)−1
(
∂2KL(θ,θ̂)

∂ϑ̂d∂ϑ̂1

∣∣∣
θ̂(k)

)
· · ·

∑
θ∈Q f(x|θ)−1

(
∂2KL(θ,θ̂)

∂ϑ̂d∂ϑ̂d

∣∣∣
θ̂(k)

)
 (19)

dθ̂(k) =

 dϑ̂0

(k)

...

dϑ̂d
(k)

 , r =


∑

θ∈Q f(x|θ)−1
(
∂KL(θ,θ̂)

∂ϑ̂1

∣∣∣
θ̂(k)

)
...∑

θ∈Q f(x|θ)−1
(
∂KL(θ,θ̂)

∂ϑ̂d

∣∣∣
θ̂(k)

)
 (20)

In the following “Dog Shock Experiment” example we have used a numerical approx-
imation for the second derivatives in J . In this example we also work in the canonical
exponential form. The canonical exponential family (see [Bernardo and Smith, 1994]) of
distributions have the following form

p(y|ψ) = a(y)eψ•y−b(ψ) where b(ψ) = ln

∫
y

eψ•ya(y)dy (21)
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Many commonly used distributions can be expressed as members of the exponential family
and the Kullback-Leibler distance simplifies to

KL(ψ, ψ̂) = −H(ψ)− Eψ [log a(y)] + b(ψ̂)− ψ̂ • Eψy
= −b(ψ) + b(ψ̂) + (ψ − ψ̂) • Eψy
= −b(ψ) + b(ψ̂) + (ψ − ψ̂) • ∇b(ψ) (22)

We now illustrate the use of the unimodal MMC algorithm on two simple problems
taken from the Bayesian Inference Using Gibbs Sampling (BUGS) [Gilks, Thomas, and
Spiegelhalter, 1994] examples. The first is a parameter estimation problem involving a
generalised linear model for binary data. The second is a parameter estimation and model
selection problem involving a generalised linear model with three plausible link functions.
WinBugs13 is used to do the sampling in both examples with a 1000 update burn-in and
a final sample size of 10000.

4.1 Example: Dog Shock Experiment

In this example we apply the unimodal MMC algorithm to the dog shock learning model
from Lindsey [1994]. While this example is quite trivial, it is intended to illustrate how the
unimodal MMC algorithm works. The sampler for this example can be found as BUGS
example “Dogs: loglinear model for binary data”. Lindsey [1994] analysed the data from
the Solomon-Wynne experiment on dogs. The experiment involved placing a dog in a box
with a floor through which a non-lethal shock can be applied. The lights are turned out
and a barrier raised. The dog has 10 seconds to jump the barrier and escape otherwise it
will be shocked due to a voltage being applied to the floor. The data consists of 25 trials

for 30 dogs. A learning model is fitted to the data where the probability that the ith dog
receives a shock πk at trial k is based on the number of times it has previously avoided
being shocked xik and the number of previous shocks k − xik by the model

πik = κxik × υk−xik (23)

or equivalently

log(πik) = αxik + β(k − xik) (24)

with α = log(κ) and β = log(υ). The important aspect of this model is that πk = πk−1κ
if the shock was avoided at trial k − 1, or πk = πk−1υ if the shock was received at k − 1.
In other words the probability of a dog being shocked in the future changes by a factor
of κ each time a shock is avoided and by a factor of υ each time a shock occurs.

The unimodal MMC algorithm was run on the output from the BUGS program. The
contents of the sample and the optimal region are shown in Figure 1. The message length
of the region is 276.49 nits. The region contains 82 percent of the posterior probability. For
this simple problem the message length and shape of the region is purely academic since
there are no issues of model selection. We are more interested in the point estimate for
the region. The following quantities are required for the Newton-Raphson point estimate
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algorithm (using notation from Equation 21)

θ = (α, β) (25)

ψ(θ, xik) = log
πik

1− πik
(26)

a(y) = 1 (27)

b(ψ(θ, xik)) = log(1 + eπik) (28)

∂b(ψ(θ, xik))

∂ψ
=

eψ(θ,xik)

1 + eψ(θ,xik)
(29)

∂ψ(θ, xik)

∂α
= xik(1− πik) (30)

∂ψ(θ, xik)

∂β
= (k − xik)(1− πik) (31)

∂b(ψ(θ, xik))

∂α
=

eψ(θ,xik)xik(1− πik)
1 + eψ(θ,xik)

(32)

∂b(ψ(θ, xik))

∂β
=

eψ(θ,xik)(j − xik)(1− πik)
1 + eψ(θ,xik)

(33)

(34)

The Newton-Raphson algorithm converged after six iterations to the estimates κ =
0.788 and υ = 0.924. The estimate for υ corresponds with the posterior mean reported by
BUGS and the maximum likelihood estimate from Lindsey [1994] to three decimal places.
The estimate for κ differs only in the third decimal place and lies above the mean and
below the maximum likelihood estimate as can be seen in Figure 1.

The epitome for this example contains only a single entry with weight 1

ε = {((κ = 0.788, υ = 0.924), 1)} (35)

4.2 Example: Beetle Mortality Data

In this example we use the unimodal MMC algorithm to perform model selection for the
BUGS example “Beetles: logistic, probit and extreme value (log-log) model comparison”.
The example is based on an analysis by Dobson [1983] of binary dose-response data. In
an experiment, beetles are exposed to carbon disulphide at eight different concentrations
(xi) and the number of beetles killed after 5 hours exposure is recorded.

Three different link functions for the proportion killed, πi, at concentration xi are
entertained

πi =
eα+βxi

1 + α + βxi
Logit (36)

= Φ(α + βxi) Probit (37)

= 1− e−eα+βxi CLogLog (38)

Dobson [1983] used the log-likelihood ratio statistic to assess the three link functions
for goodness of fit. The test showed that the extreme value log-log link function provided
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Figure 1: Plot of the posterior sample (10,000 elements) for the dog shock data. The ellipse
indicates the estimated MMLD boundary, ∂R, of the region, R. Parameter estimates:
posterior mean=circle; maximum likelihood=diamond; MMC (minimum prior expected
Kullback-Leibler distance)=square.

the best fit to the data. We ran the unimodal MMC algorithm on 10000 elements sam-
pled from the posterior for each link function. The message lengths and corresponding
normalised weights for each link function are given in Table 1. We see that MMC also
provides strong support for the extreme value log-log link function, giving it a weight of
0.9. MMC gives more than twice the weight to the probit link compared to the logit link
function. This is in contrast to the log-likelihood ratio statistic that gives only slightly
more support for the probit model. From the table we can deduce that the peak of the
probit model likelihood function contains more probability mass that that of the logit
model. In other words the logit model gets less weight by MMC because the parameters
lie in a region with slightly less posterior probability mass than the probit.

The epitome for this example contains entries corresponding to each link function

ε = {(θ̂logit, 0.03), (θ̂probit, 0.07), (θ̂cloglog, 0.9)} (39)

Table 1: MMC analysis of beetle mortality data
Link 1st part length 2nd part length Message length Weight
Logit 2.098 nits 186.857 nits 188.956 nits 0.03
Probit 1.729 nits 186.219 nits 187.949 nits 0.07
CLogLog 2.145 nits 183.310 nits 185.456 nits 0.90

5 Multimodal Likelihood Function

For multimodal likelihood functions of fixed dimension the unimodal algorithm could
be extended to build only contiguous (simply connected) regions using order statistics.
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We have not pursued this as we have devised the variable dimension posterior solution,
which is more general (see next section). However, a multimodal solution based on order
statistics could be investigated in the future.

6 Variable Dimension Posterior

This section describes an algorithm suitable for variable dimension posterior distributions.
Unlike the simple unimodal algorithm we must incorporate a Kullback-Leibler distance
acceptance test, so that regions contain only models that are similar. Such a constraint
follows from Wallace’s MMLA approximation (see, e.g. [Fitzgibbon, Dowe, and Allison,
2002a, section 2.2]). This also ensures that the MMC instantaneous codebook corre-
sponds to an epitome with BPC properties. We therefore augment the likelihood-based
acceptance rule (Equation 12) to include the following requirement

θ ∈ Q iff KL(θ, θ̂) ≤
∑

θ′∈Q f(x|θ′)−1KL(θ′, θ̂)∑
θ′∈Q f(x|θ′)−1

+ 1− err(θ) (40)

where err(.) is the same err(.) defined in Equation 11, and KL(.|.) is the Kullback-Leibler
distance.

In previous work the basic unimodal algorithm was modified to include this Kullback-
Leibler distance acceptance rule and to make multiple passes through the sample [Fitzgib-
bon, Dowe, and Allison, 2002a, page 14]. While this algorithm was found to be satisfactory
for the univariate polynomial problem it was applied to, we found that the regions refused
to grow for the change-point problem that we consider later in this section. The problem
was due to the discrete parameter space - the Kullback-Leibler acceptance rule stopped
the regions from growing.

Therefore we have devised a slightly different algorithm that does not suffer from this
problem. The algorithm consists of two phases. In the first phase we apply the unimodal
algorithm to the sample recursively. That is, we start the unimodal algorithm and keep
track of which elements of the sample have been allocated. Once the first region has been
formed we store the results and restart the algorithm on the unallocated elements of the
sample. This is repeated until all elements of the sample have been allocated to a region.
We therefore end up with a set of regions: U = {Q1, ..., QK}. Since these regions have
been formed using the unimodal algorithm some regions will not be pure, they will contain
models that are dissimilar (i.e., they will violate Equation 40). We therefore enter phase
two of the algorithm where we recursively estimate the point estimate for each region
and reassign elements between regions. The recursion stops when no reassignments were
made in the last iteration. The reassignment between regions is based on Kullback-Leibler
distance. For each element of each region we test whether there is a region whose point
estimate is closer in Kullback-Leibler distance. If there is and the element passes the
Kullback-Leibler distance acceptance rule (Equation 40) for the candidate region then
the element is moved to the candidate region. Phase two of the algorithm is given as
pseudo-code in Figure 2. After phase two of the algorithm has completed we are left with
an instantaneous MML codebook which defines an epitome having BPC properties.

We now illustrate the use of the algorithm for a multiple change-point problem.
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Algorithm 2. Pseudo-code for optimising the MMLD message length in the variable
dimension case: Second phase.

changed ← true
while changed

changed ← false
for each Q in U do

find the point estimate for Q and store it in Q̂
end
for each Q in U do

for each θ in Q do
for each Q′ in U − {Q} do

if KL(θ, Q̂′) < KL(θ, Q̂) and

− log f(x|θ) ≤ −
∑
θ′∈Q′ log f(x|θ′)f(x|θ′)−1∑

θ′∈Q′ f(x|θ′)−1 + 1− err(θ) and

KL(θ, Q̂′) ≤
∑
θ′∈Q′ KL(θ′,Q̂′)f(x|θ′)−1∑

θ′∈Q′ f(x|θ′)−1 + 1− err(θ) then

move θ from Q to Q′

changed ← true
end

end
end

end
end

end

6.1 Example: Multiple Change-Point Model

We now apply a multiple change-point model to synthetic data. In order to apply the
MMC algorithm we require a sample from the posterior distribution of the parameters
and a function for evaluation of the Kullback-Leibler distance between any two models.
The sampler that we use is a Reversible Jump Markov Chain Monte Carlo sampler [Green,
1995] that was devised for sampling piecewise polynomial models by Denison, Mallick,
and Smith [1998]. The sampler is simple, fast and relatively easy to implement. The
sampler can make one of three possible transitions each iteration:

• Add a change-point

• Remove a change-point

• Move an existing change-point

We fit constants in each segment and use a Gaussian distribution to model the noise.
However, rather than include the Gaussian parameters in the sampler we use the maximum
likelihood estimates. This means that the only parameters to be simulated are the number
of change-points and their locations. Use of the maximum likelihood estimates required
us to use a Poisson prior over the number of change-points with λ = 0.5.
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The Kullback-Leibler distance is easily calculated for the piecewise constant change-
point model and has time complexity that is linear in the number of change-points.

Figure 2: Blocks test function.

The function that we have used in the evaluation is the “blocks” function from [Donoho
and Johnstone, 1994]. The function is illustrated in Figure 2 and consists of eleven change-
points over the domain [0, 1]. We added Gaussian noise to the blocks function with σ = 2.5
for all segments. Experiments were conducted for two data sample sizes: N = 128 (small)
and N = 2048 (large). For each of these data samples we simulated 500,000 change-
point models after an initial burn-in period of 10000. Every one-hundredth element of
the sample was kept, thus reducing the usable sample size to 5000. We then applied the
MMC algorithm to each sample.

The main results for the small (N = 128) data sample size experiment can be seen in
Figure 3. This figure shows the data sample from the blocks function with σ = 2.5 and
N = 128. The element of the sample with maximum posterior probability (maximum
posterior estimate) is also shown along with the three regions with the greatest weight,
and the posterior mean estimate of the function. The epitome contained nine regions.
The remaining regions (4-9) are shown in Figure 4. In the figures a change-point is
marked using a vertical bar, and for each segment the mean and one and two standard
deviation bars are shown allowing a change in the mean or standard deviation estimates
for a segment to be easily seen.

With such little data we do not expect the true blocks function to be accurately
estimated. The point estimates for regions 1-9 are all reasonable models of the data and
represent a good degree of variety. The maximum posterior model closely fits the data in
the second segment and would be expected to have a very large Kullback-Leibler distance
from the true model. We see that none of the point estimates in the MMC epitome make
this mistake.

The point estimates for regions 1 and 7 contain the same number of change-points,
yet region 1 is given 42 times the weight of region 7 (w1 = 0.42 and w7 = 0.01). The
main difference between the two is in the location of the first two change-points. This
illustrates the need for methods to be able to handle multimodal posterior distributions
and likelihood functions as this detail would be lost by simply looking at the modal model
for each model order. This also occurs for regions 3, 5, 6 and 8, which all contain five
change-points.

The main results for the large (N = 2048) data sample size experiment can be seen in
Figure 5. In this MMC epitome there were 13 regions. Regions 4-14 are shown in Figure 6.
In these results we see that the maximum posterior estimate is quite reasonable but lacks
one of the change-points that exists in the true function. The point estimate for region
1 is able to detect this change-point and looks almost identical to the true function. The
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The data sample from the blocks test function

Maximum posterior estimate

Region 1 point estimate (w1 = 0.42)

Region 2 point estimate (w2 = 0.30)

Region 3 point estimate (w3 = 0.13)

Posterior mean (point-wise) estimate.

Figure 3: Main results for the “blocks” test function with N = 128 and σ = 2.5.
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Region 4 point estimate (w4 = 0.06) Region 5 point estimate (w5 = 0.06)

Region 6 point estimate (w6 = 0.02) Region 7 point estimate (w7 = 0.01)

Region 8 point estimate (w < 0.01) Region 9 point estimate (w < 0.01)

Figure 4: Regions 4-9 for N = 128 and σ = 2.5.

point estimates for the other regions (2-13) look reasonable and tend to increase in detail.
Some of them contain superfluous change-points. This does not damage their predictive
ability or Kullback-Leibler distance to the true model, but can be distracting for human
comprehension. This problem is discussed further in Section 7.2.

For these examples we have found that the MMC algorithm can produce reasonable
epitomes of a variable dimension posterior distribution. For both examples, N = 128 and
N = 2048, we found that the point estimate for the region having the greatest weight in
the epitome was closer to the true function than the maximum posterior estimate. We also
find that the set of weighted point estimates provides some insight into the sample from
the posterior distribution of the parameters and ultimately into the posterior distribution
itself. We would also expect that using the set for approximating posterior expectations
would be highly accurate.
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The data sample from the blocks test function

Maximum posterior estimate

Region 1 point estimate (w1 = 0.16)

Region 2 point estimate (w2 = 0.16)

Region 3 point estimate (w3 = 0.15)

Posterior mean (point-wise) estimate.

Figure 5: Main results for the “blocks” test function with N = 2048 and σ = 2.5.
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Region 4 point estimate (w4 = 0.14) Region 5 point estimate (w5 = 0.12)

Region 6 point estimate (w6 = 0.09) Region 7 point estimate (w7 = 0.08)

Region 8 point estimate (w8 = 0.07) Region 9 point estimate (w9 = 0.03)

Region 10 point estimate (w10 = 0.01) Region 11 point estimate (w11 < 0.01)

Region 12 point estimate (w12 < 0.01) Region 13 point estimate (w13 < 0.01)

Figure 6: Regions 4-13 for N = 2048 and σ = 2.5.

7 Further Work

7.1 Splitting Algorithm

The reassignment phase of the variable dimension posterior algorithm that we have used
can only reassign elements to existing regions that were created during the first phase. It
could be modified to allow for the birth and death of regions.

7.2 Superfluous Parameters

For each region we have used the Kullback-Leibler distance as a loss function to estimate
the point estimate. The point estimate is therefore a good representative in terms of
predictive performance for the models contained within a region. However, this method
of point estimation does not take into account the number of parameters in the model
estimated. This problem was not extreme5 in our examples because we did not estimate

5An example where this issue occurs can be seen in Figure 5 for the last segment of region 2. The last
change-point looks to be superfluous.
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the parameters for each segment. If we were to do so, and used an infinite posterior
sample size, then we would find that the point estimate for each region would contain a
change-point between every datum. While this does not affect predictive performance,
it does affect the human comprehension property that we require. A general, objective
means of achieving parsimony in the number of parameters is an area that requires more
investigation.

8 Conclusion

We have discussed the problem of producing a special kind of epitome of a posterior
distribution with properties that we call Bayesian Posterior Comprehension (BPC). The
epitome breaks down a posterior distribution into a small weighted subset of models from
the parameter space. Such a set can be used as point estimates, for human comprehen-
sion and for fast approximation of posterior expectations. The Minimum Message Length
(MML) instantaneous codebook corresponds to an epitome with BPC properties. A gen-
eral methodology called Message from Monte Carlo, for constructing instantaneous MML
codebooks, was extended and demonstrated on several problems with positive results.
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