
On Universal Codes for Integers: Wallace Tree, Elias Omega and
Beyond

Lloyd Allison1,∗, Arun S. Konagurthu1, Daniel F. Schmidt1
1 Department of Data Science and Artificial Intelligence, Faculty of Information Technology,
Monash University, Clayton, VIC 3800, Australia.
∗Corresponding author: Lloyd Allison (lloyd.allison@monash.edu)

Abstract

A universal code for the (positive) integers is a variable length code that can be used to store
or compress a sequence of integers. It also implies a probability distribution on integers
which can be a natural choice when the true distribution of a source of integers is unknown;
such a code and distribution may be useful in statistical inference. This paper provides two
improvements to the theory and practice of universal codes. First, it defines and examines
a new universal code omega* (omega-star) that asymptotically beats the Elias omega code.
Second, it analyses the properties of a code proposed by Wallace based on trees, and shows
it to be a universal code, to have desirable properties for use in inference, and to beat the
Elias omega code on almost all integers up to the 1697-bit code-word mark. Encoding and
decoding routines for the codes described here are implemented and available for interactive
use.1

1 Introduction

Universal codes for positive integers, N ∈ Z+, are of interest for at least three reasons.
The first is in everyday data compression where such a code can be used to store or to
transmit a sequence of integers when their true probability distribution is not known.
The second is in inductive inference when a countable set of hypotheses {Hi} in a
statistics and machine learning task is mapped to the set of positive integers: If the
true distribution of the set of hypotheses is unknown but they can be plausibly ordered
in non-increasing probability, then the ith hypothesis can be assigned the probability
2−|w(i)|, where w(i) is the code-word of integer i and |w(i)| is its length. Note if i and
j are close, Hi and Hj should have similar probabilities and hence similar code-word
lengths. Finally, it must also be admitted that there is simply fun to be had in trying
to devise an efficient code for truly enormous integers.

Elias [1] defined a code having the universal property as one where the code-word
length is monotonically increasing and “assigning messages in order of decreasing
probability to codewords in order of increasing length gives an average code-word
length, for any message set with positive entropy, less than a constant times the
optimal average codeword length for that source.” If the source has distribution

Pr(·) and entropy H =
∑
∀N>0 Pr(N) · log

(
1

Pr(N)

)
then, for any universal code w(·)

for positive integers, Ew =
∑
∀N>0 Pr(N) · |w(N)| < K · H, where K is a constant

independent of Pr(·). The latter sum is at least finite, although the distribution

1 The codes may be tried at www.allisons.org/ll/MML/Discrete/Universal/ ←click.

Data Compression Conference (DCC), pp.313-322, doi:10.1109/DCC50243.2021.00039, March 2021
c© 2021 IEEE

http://www.allisons.org/ll/MML/Discrete/Universal/

implied by a universal code must itself have infinite entropy. Naturally the hope is
that K is not large. Elias also defined an asymptotically optimal code as one where
the ratio Ew

max(1,H)
≤ R(H) ≤ K, where R is a function of H with limH→∞R(H) = 1.

Wallace proposed a code for integers [2] inspired by binary trees. He suggested
that its implied probability distribution is a good choice in inductive inference if the
true distribution of a source of integers is unknown.

In the following sections, the Elias omega code, our improvement on it which
we call the omega* (omega-star) code, and an effective implementation of the Wal-
lace tree code (WTC) are analysed and compared. Encoding/Decoding routines and
asymptotic analysis are given.

2 Elias omega (ω) code for integers

We introduce a version on the Elias omega code that gives identical code-word lengths
to the original definition [1] and differs only in minor details. The code-word for an
integer N ≥ 1 consists of one or more sections: zero or more length sections followed
by one value section. The value section is simply the minimal binary representation
of N in blog2(N)c+ 1 bits; note, the value section starts with a ‘1’.

The code-word for N = 1 is simply “1”; it is the only code-word that starts with
a ‘1’. The code-word for N ≥ 2 has at least one length section before the final value
section. In general the value section by itself is not sufficient because a decoder does
not know how long it is. The solution is to first encode the length of the value section
minus one (the length must be ≥ 2 when N ≥ 2), recursively, until the length−1 of
a length−1 of . . . of a length−1 gives one.

The leading bit of each section would, on the face of it, be a ‘1’ so that position
can instead be used as a flag to indicate either a length section (“0. . . ”) or the final
value section (“1. . . ”). The decoder notes the flag. In the case of a ‘0’ it then switches
it to a ‘1’ before computing the length of the next section. If present (N ≥ 2) the first
length section is just “0” which stands for one. If N ≥ 4 the second length section
is either “00” which stands for two or “01” which stands for three, and so on. (See
table 1 for some examples.)

Note that the omega code is similar to, and can be thought of as an optimized
and shifted version of, the Levenstein code [3] which is defined for N ≥ 0. Also note
that Rissanen [4] defined the log∗ code as an approximation to the omega code and
advocated its use in inductive inference; log∗(N) = c + log2(N) + log2(log2(N)) +
log2(log2(log2(N))) . . ., all positive terms, where c is a normalising constant, and
Pr(N) = 2− log∗(N).

3 Omega variations and improvements

Observe that the Elias omega code in effect uses a unary code (“0. . . ” ⇒ length
section, “1. . . ” ⇒ final value section) to indicate the number (≥ 1) of sections in a
code-word. Elias chose the name omega for the code because he considered it to be
“penultimate”, that is “not quite ultimate” (p.200) [1]. (That being so, the name psi,
say, would have left some room to name codes that are closer to the ultimate.) He

function omega_r_enc(t_enc)

{ function enc(N) // a bigInt N >= 1

{ var todo=N, nSect, nTet, CW="";

for(nTet = 1; ; nTet ++)

{ for(nSect = 1; ; nSect ++)

{ var section = todo.binary();

var len = section.length;

if(len == 1) break;

section = section.substring(1,len); // trim

CW = section + CW;

todo = bigInt.fromInt(len-1);

}//for nSect

if(nSect == 1) break

todo = bigInt.fromInt(nSect-1);

}//for nTet

CW = t_enc(bigInt.fromInt(nTet)) + CW; // !

return CW;

}//enc(N)

return enc;

}//omega_r_enc(t)

/* and */ function omega_star_enc(N) = omega_r_enc(omega_enc)(N);

Figure 1: Encoders for omegar(t)(N) and omega*(N) in JavaScript-styled pseudocode.

noted that the unary code could be replaced with his gamma, delta or omega codes.
In fact the leading bits of the sections can be moved to the front of the code-word and
the unary code can be replaced by any other code for positive integers – say WTC.

Define omegap(s) to be the Elias omega code modified and parameterised to use
an integer code ‘s’ for the number of sections. The code-word for 1 is “1”. For
N > 1, the code-word is the omega code-word for N with the leading bit of every
section trimmed away, and the result preceded by the ‘s’ code-word for the number
of sections. omegap(unary) is equivalent to the usual omega code. Let omega2 =
omegap(omega) which uses the omega code for the number of sections. This code
would make code-words of two, four and five sections longer and those of seven or
more sections shorter than the usual Elias omega code.

However even omega2 is not ultimate. It is possible to define a code, omegar(t),
that uses itself, recursively, to state the number of sections (minus one) in an omega
code-word. Note that omegar(·) needs some other integer code, ‘t’, to encode the
number of tetrations, i.e., the number of times that omegar is applied. Define omega*

= omegar(omega). For example, N = 36 is encoded using omega* as follows

N = 36 =⇒ trim(omega(36)) = �0 �00 �001 �100100 = 0 01 00100 (1)

#sections = 3 =⇒ trim(omega(3)) = �0 �11 = 1 (2)

#sections = 1 =⇒ trim(omega(1)) = �1 Stop (3)

#tetrations = 3, encoded using omega(3) = 0 11 (4)

=⇒ omega∗(36) = 011100100100 (5)

where spaces are added in code-words merely for readability, and trim(.) removes the
leading bit of each length and value section of recursively applied omega code-words.

Omega* makes code-words of integers with nine or more sections shorter than
under omega; the smallest such integer is 2 ↑↑ 8 in Knuth’s up-arrow notation.
Encoders for omegar(t) and omega* are given in Fig. 1; the decoder adopts similar
logic in reverse.

Although omega* might be called post-penultimate it is not ultimate because one
can reconsider the encoding of the number of tetrations but the integers for which
there would be any further improvement would be “very large” indeed.

4 Wallace tree code (WTC) for integers

The code for integers proposed by Wallace [2, 5] is based on full binary trees, and
hence depends on the Catalan numbers Cf ,∀f ≥ 0, with the first few numbers being
C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, and so on.

Any full binary tree consists of f ≥ 0 fork (i.e. internal) nodes and f + 1 leaf
nodes. Each fork node has exactly two sub-trees and each leaf node has zero sub-trees.
The number of full binary trees containing f fork nodes is the f th Catalan number,

defined as: Cf = 1
f+1

(
2f
f

)
= (2f)!

(f+1)!f !
. This yields the recurrence Cf+1 =

2(2f+1)Cf

f+2
.

Furthermore, limf→∞
Cf+1

Cf
= 4, and Cf+1 =

∑f
j=0(Cj ·Cf−j) [6]. Finally, we will need

the cumulative Catalan numbers cCf =
∑f

j=0Cf ,∀f ≥ 0, which are cC0 = 1, cC1 =
2, cC2 = 4, cC3 = 9, cC4 = 23, and so on.

As a preliminary matter, note that a full binary tree can be encoded [7] during a
pre-order traversal of the tree, outputting a ‘1’ for each fork and a ‘0’ for each leaf
(e.g. see Fig. 2a). The end of the tree’s code-word is indicated upon reaching one
more ‘0’ than ‘1’s, and this event does not happen earlier within the code-word so
this is a prefix code. It is easy to recover the tree from the code-word.

Reading a ‘1’ as left and a ‘0’ as down, a tree’s code-word can also be interpreted
as encoding a Dyck path [8] in a square lattice from some, initially unknown, point
on the diagonal (f, f) to (0,−1), that is, a zig-zag path that does not go below
the diagonal until it terminates with the final ‘0’. Fig. 2a shows three of the five
paths from (3, 3) to (0,−1) with their code-words including the lexicographically first
‘1010100’ and last ‘1110000’. The number of paths (Fig. 2b) from row r, column c,
to (0, 0) is given by

pathsr,c = 0, if c > r,

paths0,0 = 1,

pathsr,0 = 1, r ≥ 0,

pathsr,c = pathsr−1,c + pathsr,c−1, otherwise.

(6)

It can be shown that pathsf,f = Cf .

(a)

r ↑ ...
6 1 6 20 48 90 132 132 0 · · ·
5 1 5 14 28 42 42 0 · · ·
4 1 4 9 14 14 0 · · ·
3 1 3 5 5 0 · · ·
2 1 2 2 0 · · ·
1 1 1 0 · · ·
0 1 0 · · ·

0 1 2 3 4 5 6 · · · → c

(b)

Figure 2: (a) Three Dyck paths with corresponding code-words and implied trees.
(b) pathsr,c.

The code for integers is most easily explained for N ≥ 0; call this version of the
code WTC0. The full binary trees are sorted on their code-word lengths and, for a
given length, lexicographically. For a given length, the first code-word is of the form
(10)f0 and the last 1f0f+1 (Fig. 2a). Integer N ≥ 0 is given the code-word of the N th

full binary tree (in the lexicographic order of full binary trees, counting from zero).
Encoding and decoding routines are given in Fig. 3. The code-word for N = 0

is “0”. For N > 0, the Cf integers in the range cCf−1 < N ≤ cCf , all have code-
words of length 2f + 1. f can be found by searching for the largest cumulative
Catalan number, cCf−1, that is less than N . The code-word for N is the Kth of the
lexicographically ordered code-words of length 2f + 1 where K = (N − cCf−1). The
code-word can be found using pathsr,c. Starting with an empty code-word at position
(r, c) where r = f, c = f . If K > pathsr−1,c then append a ‘1’ (move left, c = c−1) to
the code-word and we need a code-word at least that much further up the rankings
(K = K−pathsr−1,c). Otherwise, append a ‘0’ (move down, r = r− 1). Repeat until
r = c = 0.

The decoding routine (also in Fig. 3) follows similar logic to the encoding routine.
A valid code-word, str, contains f = b|str|/2c ‘1’s and f +1 ‘0’s and no proper prefix
contains more ‘0’s than ‘1’s. As str is processed from left to right, every ‘1’ (move
left) means that str is known to be at least pathsr,c further up in rank amongst the
code-words of this length. Repeat until the end of the code-word.

It is easy to “shift” the WTC0 code (for integers N ≥ 0) to instead encode integers
N ≥ 1; call the shifted code WTC1 if we need to distinguish between it and WTC0.

5 Comparing Elias Omega and Wallace Tree code

Table 1 gives examples for integers coded under WTC1 and omega. The lengths of
WTC1 code-words increase from time to time always in steps of two. However, lengths
in the Elias omega code increase in steps of various sizes, for example increasing by

function WTC0enc(N)

{ if(N.isZero()) return "0";

var f=cCsearch(N);

//min f st cC(f)>N

var K=N-cCatalan(f-1);

var r=f, c=f, ans="";

while(r > 0)

{ var Decr=paths(r-1, c);

if(K >= Decr)

{ ans=ans+"1"; c-- ;

K=K-Decr; }

else { ans=ans+"0"; r-- ; }

}//while

return ans + "0";

}//WTC0enc

function WTC0dec(str)

{ //assumes str a valid code-word

if(str == "0") return Zero;

var i, f=Math.floor(str.length/2);

var r=f, c=f, Ans=cCatalan(f-1);

for(i=0; i < str.length; i ++)

if(str.charAt(i)=="0") r--;

else /* "1" */

{ Ans=Ans+paths(r-1,c);

c-- ;

}

return Ans;

}//WTC0dec

Figure 3: Encoder and decoder for WTC0 for all integers ≥ 0.

Table 1: Example code-words (left) and code-word lengths in bits (right)

N Elias ω WTC1

1 1 0
2 010 100
3 011 10100
4 000100 11000
5 000101 1010100
6 000110 1011000
7 000111 1100100
8 0011000 1101000
9 0011001 1110000
10 0011010 101010100

N |Elias ω| |WTC1|
102 13 13
103 17 17
104 21 21
105 28 25
106 31 27
107 35 31
108 38 35
109 41 39
...

...
...

10100 (googol) 349 345

four on going from N = 15 to N = 16 when the value section grows by one and a
whole new length section is added; there is no upper limit to the step size and this
flows through to the log∗ distribution. Small uniform steps are desirable in inductive
inference so that hypotheses of similar probability rank do have similar probabilities.

6 Implied probability distributions

An efficient code for the positive integers N ≥ 1 implies a probability distribution
on them in which Pr(N) = 1

2|w(N)| . The Elias omega and Wallace tree (WTC1) codes
imply proper probability distributions on the positive integers: Consider an infinite
string of bits generated at random, independent and identically distributed (i.i.d.),
with Pr(‘0’) = Pr(‘1’) = 0.5. For each code, the infinite string has some prefix, of
length L and probability 1

2L
, which is a valid code-word in that code. In principle, by

removing the prefix and repeating forever, all possible code-words will be sampled in
proportion to their probabilities under the corresponding distribution.

6.1 Elias omega:

An Elias code-word is made up of zero or more length sections followed by one value
section. The infinite string of bits starts either ‘1’ or ‘0’. If it starts ‘1’, that itself is a
prefix which is an Elias code-word for the value one, of probability 0.5. If it starts ‘0’
that is decoded as 1 (the lead bit having been changed) which indicates that a section
of length 2 = 1 + 1 follows. If the next section starts ‘1’ it is a value. If it starts ‘0’ it
is a length, “00” giving 3 = 2 + 1 or “01” giving 4 = 3 + 1. And so on. Eventually a
section starting ‘1’, of length s, will appear marking the end of a code-word of length
L. There are 2s−1 code-words of length L.

6.2 WTC:

Because a one-dimensional random walk (‘0’ left, ‘1’ right, say) returns to the origin
with probability one, the infinite string has some prefix of length L = (2f + 1), i ≥ 0,
that is a valid WTC1 code-word. The probability of the prefix is 1

22f+1 . There are
Cf code-words of length (2f + 1). The total probability of those integers having
code-words of length (2f + 1) is Cf/22f+1, f ≥ 0. The total probability of all positive
integers,

∑
f≥0Cf/22f+1, must be one.

6.3 Comparative code-word lengths

Beyond N = 215 and up to the 506 decimal digit integer corresponding to cC847 + 1,
WTC has the shorter code-words, rarely equalled by the Elias omega code (e.g., for
values between cC134 + 1 and 2255 − 1, both codes using 269 bits). To put these
numbers into context, this is past the size of the human genome (3.2 × 109 base-
pairs), the estimated number of baryons in the universe (1080) and one googol (10100).
Beyond some further point the Elias omega code must take a lead over WTC either
permanently or at least most of the time – see section 7.

For each code, integers come in “blocks” that contain integers having code-words
of the same length under that code. The sizes of the blocks differ between the codes.
For WTC, the blocks are [1, 1], [2, 2], [3, 4], [5, 9], . . . , [cCf−1 + 1, cCf], . . . having code-
lengths 1, 3, 5, 7, . . . , 2f + 1, . . . bits respectively. For f ≥ 848 and up to at least f =
1000, |WTC(cCf−1 + 1)| = |omega(cCf−1 + 1)| and |WTC(cCf)| = |omega(cCf)| − 2.

1. The smallest f > 134 such that |WTC(cCf−1 + 1)| = |omega(cCf−1 + 1)| is 848.
The code-length is 1697 bits.

2. The smallest f > 134 such that |WTC(cCf−1 + 1)| > |omega(cCf−1 + 1)| is
3389. The code-lengths are 6779 and 6778 bits, respectively.

3. The smallest f > 134 such that |WTC(cCf)| > |omega(cCf)| is 13, 877, 006.
The code-lengths are 27, 754, 013 and 27, 754, 012 bits, respectively. (There are
larger f where |WTC(cCf)| ≤ |omega(cCf)|.)

7 Asymptotic Analysis of Wallace tree code

It is of interest to determine the asymptotic behaviour of WTC for increasing integer
N . Let L(N) denote the length of the binary code-word assigned to integer N by
WTC1. Recall from Section 4 that Cf denotes the f th Catalan number, and cCf
denotes the sum of the first f Catalan numbers. Then, the length, in bits, of the
code-word assigned by WTC1 to integer N is

L(N) = 2 f(N) + 1 (7)

where f(N) = inff {Z : N > cCf} denotes the smallest integer f such that N exceeds
cCf .

7.1 Bounds on L(N)

The following lemma provides appropriate upper and lower bounds for L(N).

Lemma 1. Let L(N) denote the length of the code-word assigned to integer N by
WTC defined by (7). Let

f(N) ≡ f =

(
logN + 3

2
log
(

logN
log 4

)
+ 1

2
log
(
9π
16

))
(1− 3/2/ logN) log 4

and

f(N) ≡ f =
logN

log 4− (3/2/f) log f
. (8)

Then, for all N ≥ 5, we have

2f(N) + 1 < L(N) < 2f(N) + 1.

These bounds allow us to determine the asymptotic behaviour of the length of
WTC1 code-words.

Theorem 1. L(N) = log2N +
3

2
log2 log2N +εN , (9)

where lim sup
N→∞

{εN} ≤
3 + log

(
9π
32

)
log 4

< 2.0748, (10)

lim inf
N→∞

{εN} ≥ −1

2
. (11)

The proofs of Lemma 1 and Theorem 1 are available separately2 Complementing
the comparisons in section 6.3, an interesting consequence of Theorem 1 is that there

2 www.allisons.org/ll/MML/Discrete/Universal/appendicies.pdf ←click

http://www.allisons.org/ll/MML/Discrete/Universal/appendicies.pdf

10
80

10
82

10
84

10
86

10
88

10
90

Integer

275

280

285

290

295

300

305

310

315

C
o

d
el

en
g

th
 (

b
it

s)

Exact codelength

Lower bound

Upper bound

Figure 4: Comparison of exact Wallace-tree code-lengths against upper and lower
bounds derived in Lemma 1.

exists some integer M such that ∀N > M , |WTC(N)| > |omega(N)|, although the
precise M is unknown and likely inconceivably large.

Theorem 1 can be used to demonstrate both the universality and asymptotic
optimality of WTC, building on Elias [1]. To achieve this we first note that the Elias
delta code [1], which has asymptotic code-length log2N +2 log2 log2N +O(1), is both
universal and asymptotically optimal. From Theorem 1 it is clear that code-words of
WTC are asymptotically shorter than those of Elias delta code. This establishes the
universality and asymptotic optimality of WTC.

7.2 Asymptotic code-length formulas for WTC

It is useful to have a simple expression for the code-word lengths of integers under
WTC. The requirement for such lengths arises in inductive inference by minimum
length encoding. It is common to use Rissanen’s log∗ code-word length formula
to provide an approximate length for the statement of integer parameters. WTC
provides an alternative coding scheme in such settings. Theorem 1 suggests the
approximate code-word length formula for WTC as:

L(N ; c) =

1 for N = 0
3 for N = 1
log2N + 3

2
log2 log2N + c for N ≥ 2

(12)

where c is a constant. Possible choices for c are:

• c = 2, based on the upper-bound on εN in Theorem 1, which ensures L(N ; c) is
non-decreasing;

• c = −0.5, based on the lower-bound on εN ; or

• c = 0.75, which is the average of the two error bounds.

The accuracy of both the bounds given by Lemma 1 and the asymptotic expression
(12) is demonstrated in Fig. 4. The figure shows a close correspondence between the
asymptotic expression (9) and the exact code-length (7), particularly as N increases.

8 Conclusions

The Wallace tree code (WTC1) for positive integers N ≥ 1 has shorter code-words
than the Elias omega code for most integers up to at least 2.6855 × 10505 (sec.6.3).
Code-word length increases in steps of two from time to time as N increases. A
formula for the approximate code-word length was derived in section 7.2.

We note that there is a second recursive version of the code, WTCr. It has the
same code-word lengths as WTC but is based on a non-lexicographical ordering of
code-words: For code-words of length 2f + 1, f > 1, consider all partitions of 2f
into j and k such that f = j + k. Order code-words of the form ‘1’++v++w, where
sub-code-words |v| = j, |w| = k and j+k = 2f , on v and within that on w, recursively.

The standard Elias omega code in effect uses a unary code (“0...” ⇒ length
section, “1...” ⇒ final value section) to indicate the number (≥ 1) of sections in a
code-word. As defined in section 3, this unary code can be replaced by another code
for positive integers and, beyond that even recursively which leads to the omega*

code which is more efficient for huge values far beyond those met in everyday data
compression.

Importantly, ordering various codes on increasing asymptotic efficiency gives:
Elias delta, Wallace WTC, Elias omega, omega2, and omega* (sec.3); all are asymp-
totically optimal in the sense of Elias [1].

Acknowledgment

The authors would like to thank the late Chris Wallace (1933–2004).

[1] P. Elias, “Universal codeword sets and representations of the integers,” IEEE Transac-
tions on Information Theory, vol. IT-21, no. 2, pp. 194–203, 1975.

[2] C. S. Wallace, Statistical and Inductive Inference by Minimum Message Length,
Springer, 2005, see sections 2.1.4, 2.15 and 2.16, pp.93-100.

[3] A. V. Levenstein, “in Russian,” 1968, see D. Salomon, Variable-length Codes for Data
Compression, Springer, p.80, 2007.

[4] J. Rissanen, “A universal prior for integers and estimation by minimum description
length,” The Annals of Statistics, vol. 11, no. 2, pp. 416–431, 1983.

[5] L. Allison, Coding Ockham’s Razor, Springer, 2018.

[6] A. de Segner, “Enumeratio modorum, quibus figurae planae rectilineae per diagonales
dividuntur in triangula,” Novi commentarii academiae scientiarum Petropolitanae, pp.
203–209, 1761, (1758-1759, published 1761).

[7] C. S. Wallace and J. D. Patrick, “Coding decision trees,” Machine Learning, vol. 11,
no. 1, pp. 7–22, 1993.

[8] F. Ruskey and Williams A., “Generating balanced parenthesis strings by prefix shifts,”
in CATS, Wollongong, 2008, pp. 107–115.

https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1007/0-387-27656-4
https://www.jstor.org/stable/2240558
https://www.jstor.org/stable/2240558
https://doi.org/10.1007/978-3-319-76433-7
https://doi.org/10.1023/A:1022646101185
https://dl.acm.org/citation.cfm?id=1379361.1379382

	Introduction
	Elias omega () code for integers
	Omega variations and improvements
	Wallace tree code (WTC) for integers
	Comparing Elias Omega and Wallace Tree code
	Implied probability distributions
	Elias omega:
	WTC:
	Comparative code-word lengths

	Asymptotic Analysis of Wallace tree code
	Bounds on L(N)
	Asymptotic code-length formulas for WTC

	Conclusions

