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SUMMARY

Previous work by Wallace and Freeman (1992) on the application of Minimum
Message Length (MML) estimation to the Factor Analysis model of a multivariate Gaussian
population is extended to allow several common factors. The extension is not trivial, raising
problems in the choice of an appropriate prior for the factors, and in the evaluation of the
Fisher information of the model. However, the resulting complications appear to cancel out,
giving an estimator similar to the single-factor case.

The estimator has been extensively tested on simulated data, and compared with the
maximum likelihood and AIC estimator. The MML estimator is found to be substantially
more accurate, to provide consistent estimates of factor scores, and to recover the number of
common factors more reliably than a likelihood-ratio test among maximum likelihood models.
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1. Introduction

We have developed and tested a Minimum Message Length (MML) estimator for a
version of the well known Factor Analysis model for a multivariate population, here assumed
to have a Gaussian density. The work extends an earlier work (Wallace and Freeman 19923,
which addressed the restricted problem with a single factor. Here, we consider models with an
unknown number of factors. In some respects the earlier work generalizes in a straightforward
way, and we assume familiarity with it. For consistency, we retain and extend the perhaps
unusual notation of the single-factor paper. Hereafter, that paper is referred to as WF.

The data is a sample of N data vectors {x , n = 1... N/, each of K components
n

(x4, k =1...K}, independently drawn from the population. A version of the Factor model is

Xk = Hy '*‘%Vry'akj"’dkrnk (J=1..J<K) (1.1)

where parameter yy is the mean in dimension k, parameter oy, is the "specific variation” in
dimension k, parameters {a , j = 1...J} are a set of J "Factor load” vectors each of dimension
J

K, parameters {v, j = 1...J] are a set of J "score" vectors each of dimension N, and the NK
j

variates {r,, n=1...N, k = 1.. . K} are regarded as having independent N (0, 1) priors.
(Harman 1967)

The conceptual model underlying factor analysis is that there exist some hidden, or
latent, variables which have a linear effect on the K variables actually measured. The aim of a
factor estimation method is to discover, to the extent revealed by the data, the number J of
these variables, their values {vy;/ for each member of the sample, and their effects on the
measured variables, represented in the model by the factor load vectors {a J. The model
i

further assumes that each measured variable is subject, independently of all other variables, to
some Normally-distributed variation or measurement error r,; which is not affected by the
hidden variables. The magnitude of this "specific" variance is modelled by the set of estimates

{ou}.

The model {1.1) contains ambiguities. First, the factor load vector a and factor
J

score vector v appear in the model only via their product. Thus the data cannot reveal their
i

individual lengths. (By "length”, we mean throughout the Euclidean vector length
Ja’a=1al) This ambiguity is conventionally resolved by assuming the scores {v,;/ to be

parameters with independent unit Normal priors. An alternative resolution is to constrain the
scores so that Ev,z,j = N for all j. This alternative is mathematically more difficult and will
N

not be pursued.

A more troublesome ambiguity is that the data cannot reveal the individual factor

loads. For each load vector a , define the scaled load 1 given by y = agloy (k=1...K). We
J i

will call the vectors ¢ the "true latent vectors” (TLVs). Assuming Normal distributions of
i

scores, the latent variable loads affect the population density only through the matrix X ¢

t7, so
b



the data cannot distinguish among the infinitely many sets of TLV vectors giving the same
matrix. Itis conventional and convenient to design the estimator to estimate a set of
orthogonal latent vector (OLV) loads {5 }

J
{T . AT Bt#j =0 . We similarly require the estimated score vectors
S

suchthat T8 g7 =%«
VAN
to be orthogenal.

We similarly require the estimated score vectors to be orthogonal.

MML is a Bayesian method, so we assume prior density distributions over all
parameters, and develop an estimator along the same lines as in the single-factor case.

Section 7 discusses appropriate testing criteria for the estimator, and section 8
describes the results of some testing using artificial data. The results show the MML estimator
to be on average more accurate than the ML estimator, which exhibits serious bias if the
factors are weak. The number of factors (J) is indicated quite reliably by the number which
minimises the message length.

2. Priors

In this paper, we attempt to adopt priors which are as nearly as posssible
uninformative.

In considering the choice of a prior for the latent variable effects (the "factor

loadings" a ) the estimate of ¢ for each measured variable may be taken, in default of any
jj

other measure, as determining a natural scale for that variable. The effects of hidden variable
7 on the measured variables, when expressed in these natural scales, are given by the vector ¢
g
and the entire factor model is most "naturally” expressed in terms of measured and hidden
variables represented in the "naturally scaled" space. We therefore suppose the prior density
over the length and direction of a factor load vector to be colourless in the scaled space. In

particular, we suppose ¢ to have a spherically symmetric prior density, and each of the J such
J

vectors to be an independent realisation of this density.

This assumption does not carry over to the priors assumed for the estimated OLY
vectors {8 /. If the "true" scaled effects of the hidden variables are given by the TLV vectors
J

{t }, we have no reason to suppose that these vectors will be mutually orthogonal. Indeed, we
J

assume their directions to be independently uniformly distributed, this being the vaguest
possible prior for their directions.

We assume the TLVs to have independent spherically symmetric prior densities of

K-dimensional Normal form with scale parameter p. If a set of J vectors {u } are drawn from
i
this density, the joint density of their lengths {u;/ is

J
(1 p)’ I_Il Hy (1l p) where
J,=



K K-1 -7’12
H . - z 2.1
A(Z) 2K (K/72)! ¢ ¢ ( )

If now a set of J mutually-orthogonal vectors {¢ } is constructed such that
J

Zc_‘c Euu
P I

the joint distribution of the lengths {c;/ is proportional to (Muirhead, 1982, p107)

Ic mcl

(1/p)’ H Hi(citp) T s (2.2)

f<] J

The density (2.2) has the same form as (2.1) save for a "correction” factor which
suppresses the density if two or more vectors have similar length, and inflates the density
when one or more vectors are small.

Thus, starting from the vague prior over the TLVs, namely that they have
independent spherically-symmetric Normal densities, we are led to conclude that an
appropriate prior for the OLVs actually estimated shows their lengths not to be independently
distributed. It has been suggested that one might prefer to model the OLV prior directly,
presumably assuming the OLV lengths to be independent. However, our conceptual model is
that the observed data are linearly affected by several distinct hidden variables, and there
seems no prior reason to suppose that the effects of these variables on the measured variables
should bear any relation to one another such as orthogonality. If this argument is accepted,
then we expect the lengths of the OLVs rarely to be close to equality. A pair of OLVs can
have equal length only in the unlikely coincidence that a pair of hidden variables (TLVs)
happens to have equal lengths and to be orthogonal. Form (2.2) expresses the prior belief that
such coincidences are unlikely.

The lengths of the v and j vectors for some OLV's are confounded in the model, as

only their product affects the likelihood. Thus, the estimator really estimates the product
v; b; =1y 11§ 1. We therefore consider that the model quantity most closely analogous to the

5
magnitude of an OLV 1s v;b; (or v; b;/N), and hence adopt for the joint prior density of the
lengths of {3 Jand {v J a form which is the assumed density of the "true" load and score

g ;

vectors, times a "correction” factor of the form above (2.2) depending on the v; b; products of
the OLVs:

h({bje ij) =

Iv? b |
Crrs (1/pY’ H Hy(b /p)HﬂvﬂH#

2 (2.3)
i<j vibjwb

where C gy ts a normalisation constant independent of p.
The factor 27 J ! is included because the model is unchanged by simultancous

negation of § and v, and the [abelling of the OLVs is arbitrary.
g .



The normalisation constant C yg; has not been derived in closed form, but we found
by experiment an approximate expression for log Cyg; shown below.

N+K—-ald)
log ey =0.25J(J = Dlog oo ¥ () (2.4)

The constants ¢(J) and a(J) are tabulated in table 1, which also shows the RMS and
maximum etror of the approximation over the range 5 € N £2200,5< K < N,

Number of OLVs J 2 3 4 5 6
a(J) 1.464 | 1.815 | 2.14% | 2.502 | 2.82
r{J) 0.468 | 1.566 | 3.418 | 6.124 | 9.76
RMS error 0.003 | 0.004 | 0.009 | 0.02 0.07
Max error 0.007 | 0.02 0.05 0.08 0.2

Table 1. Parameters for approximating the log
normalisation of the Normal OLYV length prior

The joint prior density of the directions of the OLVs is assumed to have the uniform

value

J

.Hl Sk i (2.5}
,v'=

where Sp= DaP? (D)

is the surface area of the unit D-sphere, and we similarly assume the joint prior density of the
directions of the score vectors to be uniformly

J
IT 1Sy (2.6)
Ji

As in WE, we assume the specific variations {o;/ to have independent prior densities
proportional to F/oy in some finite range, and the means {4} to have independent uniform
priors in some finite range.

3. The Information Matrix

MML (Baxter and Oliver, 1994) chooses the model and parameter estimate & which
minimise

h(8)

NI1(d)

where h(8) is the prior density of the parameter vector 8, and 1/ I{8) is an approximation (o

T(f) = — Iog|: Prob(data é)}



the volume in §-space spanned by the expected estimation error. 7(8) is the determinant of the
matrix of expected partial second derivatives of T with respect to the components of 8. For
many estimation problems, I(#) is well approximated by the Fisher Information, but for the
factor model, the derivatives of /2( ) cannot be neglected. In WF, we took into account the
derivatives of log i2( ) with respect to the factor scores. With multiple factors, the variation of
log h{ ) with respect to the OLVs can also be significant, so we now include derivatives of

log A( ) with respect to the lengths of the vectors {# J. We also depart from WF by choosing

J
to express the model in terms of the scaled OLV components { B4,/ rather than the unscaled

component {oy B/, With this choice of parameters, eqn (4.2) of WF becomes (using
2y, =0
H

I =2KN?‘Kv2K(1+b2)(N“2)/im? (3.1)
The calculation in WF generalizes directly to J > | factors giving
J
L=2F N 1 [v%"{(l + b5 } / 1}0{,‘ (3.2)
e :

Including the derivatives of fog /1( ) with respect to the lengths (b ;} of the factors modifies this
to

Iy = QKNEKIE[@ +(1+ %) p2 (1 4+ b3 NP J / faﬁ (3.3)

Note that (3.2) and (3.3) are determinants of matrices which include derivatives with respect to

all K components of each OLV # and all N components of each score vector v . Thus, they
g J

include the sensitivity of T to differential changes of /# ] and {v } which do not preserve the

g !

mutual or orthogonality of OLVs and score vectors. However, in computing (3.2), use has

been made of the fact that the derivatives are evaluated for mutually-orthogonal vectors, The

guestion of enforcing the derivatives to preserve orthogonality is addressed below. First, we

switch to the polar parameterisation of the model, using length and direction rather than

Cartesian components for the OLVs and score vectors. In this change of parameters, the

sensitivity determinant transforms as the square of a density, giving

Iy = zKNEKr_I[(vﬁ +(1+ b3/ pw Ny bﬁ)‘N—Q)bﬁ(K"’}/gaﬁ (3.4)
; )

Consider some pair of OLVs 4 and 8, and their associated score vectors v and v .
g : j !
The expression (3.4) contains contributions from the sensitivity of T to changes in direction of
B, p,v and v. Letus consider changes in the directions of 4 and # corresponding to
P ’ oo
differential rotations of these vectors in the plane containing them both. Let &, be an angle
giving the direction of £ in the plane, and 8, be an angle giving the direction of £ in the
j 1

plane. Similarly, let ¢;, ¢; be angles giving the directions of v, v in the plane containing
o

them both. Then 7, contains a contribution due to the expected second differentials of T with



respect to 8, 6, ¢; and ¢;. It can be shown that this contribution amounts to a multiplicative
factor of 1, given by

V(L B3 Vil + biwE b5y by (3.5)

and that there are no cross-derivatives with other parameters of the model with non-zero
expectation.

As noted above, (3.5) arises from the unconstrained variation of the four parameters
8;, 61, ¢; and ¢;. In fact, the four parameters are constrained by the requirement of
orthogonality, so that there are really only two parameters, say & and ¢, with

9}28,¢j=¢,9133+ﬂ/2,¢[=¢'+R’/2.

When T is expressed in terms of these two parameters, and its second differentials with
respect to them calculated, it is found that together they contribute to the sensitivity
determinant a multiplicative factor of the form

(505 - vib])? (3.6)
rather than the form (3.5).

The above expression shows that when factors j and [ have equal size, a rotation can
be applied to the OLVs and score vectors which has no effect on the likelihood or the priors,
and hence no effect on T. The reader might be surprised by the fact that this degeneracy
becomes apparent only when the orthogonality constraint is taken into account, since such
rotations are possible, and have no effect on 7', whether or not the OLVs are explicitly
constrained to be orthogonal. The reason that the degeneracy is not apparent in the expression
14 is that [ indicates the effects of perturbations of the parameters on T only to second order.
When the OLVs and score vectors are not explicitly constrained, simultaneous variation of twao
OLVs and two score vectors is required to produce a perturbation having no effect on T, and
so the degeneracy would be revealed only by a fourth-order analysis treating differentials up to
the fourth, Once the orthogonality constraint is applied, however, the simultaneous variation
involves only two, rather than four, dimensions of parameter space, and so is revealed by a
second-order analysis using second partial differentials.

Modifying I, by replacing a factor of form (3.5) by a factor of form (3.6) for every
pair of OLVs gives the final sensitivity determinant as

(K+N-27) 7 -
I= 2KN2KEI[(v§ + (LB PP (L BN IR ”]

.[n T (vib% —vibiy |/1lo} (3.7)
Joi<j k

4. The MML Estimator

In this section, oy, £, v, ete. refer to estimates rather than "true" parameter values.

J J



The MML estimator is chosen to minimize
L =!logI- log (prior density) - log (likelihood).
In the present case, the prior density is the product of the prior densities of x (assumed

uniform), {o,} (assumed proportional to 1/;), the lengths of the OLV and score vectors
{b, v } (given by (2.3}), and the directions of the OLV and score vectors (2.5, 2.6).
Joi

Omitting constant terms, we have

L=(N=DZlog op + 1N =J = D log (1+57)
‘ ° J

+ (K = NZ log v5 + 1 Zlog(vi + (1 +b3)/ p°)
) } “

2, ! 2 2
+1 ?v),- + ~2—;3 )j;bj + %%l)%(y”k -~ }%1),,jbkj) + KJ log p 4.1)

where {v,;/ are the scaled data {(x,; — 4 )/o;} and we assume that the estimate
He = Z x/N. (The proof of this assumption follows the proof in WE)
"

Note that the factors of the form (vj’-bi — vib?), which appear both in the prior and in
I, cancel out and do not appear in L. This cancellation is not an accident, as these factors arise
from a singularity in the mapping of TLVs into OLVs which affects both the prior and I in
similar ways. Consider a model with only two latent vectors (J = 2} in K dimensions. The
space of possible TLVs has 2K dimensions, but the space of possible OLVs has only 2K -1,
as the OLVs lose one degree of freedom by being constrained to be orthogonal. Normally, a
1-dimensional manifold of TLV pairs maps into each QLV pair as all TLV pairs in the
manifold gives rise to the same data distribution. However, consider a set of TLV pairs in
which all pairs lie in the same fixed plane of K-space, both TLVs of all pairs have the same
fixed length, and the two TLVs of each pair are orthogonal. This set is a 1-dimensional
manifold, as there is only one degree of freedom: the angular orientation of the TLV pair in
the fixed plane.

The matrix

zrt’
1

has the same value for all pairs in the set. However, rather than mapping into a single OLV
pair, such a special set of TLV pairs maps into a 1-dimensional manifold of OLV pairs
identical to the set of TLV pairs.

Normally, the prior density in a I-dimensional manifold of TLV pairs condenses
onto a single OLV pair, but for a special TLV set, the prior density is spread over a manifold of
OLV pairs, so these OLV pairs acquire a zero prior density. Similarly, it is normally the case
that if two OLV pairs differ, then they are images of two different TLV manifolds, giving rise
to two different data distributions. However, if the two OLV pairs are members of the image
of the same special TLV set, they give rise to the same data distribution, and so the
perturbation which changes one pair into the other has no effect on T, and I is zero.



An OLV pair is in the image of a special TLV set just when the two OL.Vs have
equal length, so just in this case the prior density of the pair drop to zero, and I becomes zero.

We now proceed to describe the MML estimator.

Define y as the K-vector {y,;, k =1...KJ

L

Wk @S X — Hp = O Y

Y as the K by K matrix Xy yT
no-

) -H
wp= 175+ (1+ 001 p%)
and introducing variables (R;, Q;, j=1....J}

Then the estimates minimising L satisfy:

ot = §w,%k/(N -1+ §ij£}) (4.2)
Q=1 +b3 (K - 1) Ivi+u; (4.3)
v = lngYlgj/Qﬁ (4.4)
Rj:v§+(N—J—1)/(1+zgj?)+(1+uj)/p2 (4.5)
Zgj = Yfgj/QjRj (4.6)

By including an orthogonality equation

h=b-%bb.b)b 47
J Jolite oy
(j=2..J}

equations (4.2} to (4.7) may be used as a functional iteration scheme for the numerical

calculation of the OLVs (b ] and the specific variances [O'ff}.
j

To start the iteration one may set R; = v; = N(all;), and set the b vectors parallel to the J
i

dominant eigenvectors of the data correlation matrix, with squared lengths equal to the
elgenvalues.

As in WF, the iteration may drive an OLV to zero if the data are consistent with a
model having fewer than J factors. In that case, the iteration is restarted with reduced J.
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The iteration does not directly require or yield estimates of the score vectors. These
may be calculated after convergence as

Vi = %ynkbkj/Qj (4.8)
5. The Scale Parameter p

In an attempt to use priors importing little prior information, we have assumed the
(o-scaled) TLVs to be independent realisations of a spherically-symmetric K-dimensional
Normal distribution with radical scale p. If relevant prior information is available about the
TLVs, it of course could be used in lieu of our prior.

Even if our spherically-symmetric Normal form is accepted, prior belief about the
likely strength of TLVs can be used to choose a value for the scale p. However, in attempting
to obtain an estimator assuming as little prior knowledge as possible, we have chosen to treat
p as a hyper-parameter to be estimated from the data. The estimate of p minimising L is
given by

p2:§(b§)+uj(1+b§)/KJ (5.1)

and this equation is included along with (4.2) .. (4.7) in the functional iteration scheme. The
effect is to remove from the estimator any significant prior expectation about the average
magnitude of the TLVs. However, the assumption of the multivariate Normal prior form for
TLVs still imports an expectation that the TLVs will be of roughly similar magnitude. For
large K, the ,yzK prior assumed for the squared TLV lengths can have a relatively narrow
spread, so this prior expectation of similar magnitudes can have a noticeable effect on the
estimates. We would prefer to adopt a more diffuse prior for the TLVs, but unfortunately have
been unable to find any form other than Normal for which the corresponding joint OLV
density could be obtained in ¢losed form.

6. Testing

The MML estimators, using both Normal and Cauchy priors, have been tested on
artificial data. In all tests, the true population specific variations {o/ were all set to one and
the true mean set to zero. Since the methed, and the Maximum Likelihood (ML) method
against which it was compared, are scale and location invariant, there is no oss of generality
in this choice. Tests were conducted in runs of 1000, using 1000 randomly-generated data
sets. In arun, the sample size N, dimension K, true number of latent variables J, their lengths
{t,;}, and the scale p assumed for the MML Normal prior, were held constant. For each test of

the run, J vectors {t J were formed with the specified lengths {t;}) and directions
’
independently sampled from the uniform distribution over the K-sphere. Then N data vectors

{x ] were formed as
H

=48 +E.vnj{_
n n J J

where foreach x , {v,;, j = 1...J/ and the components {s,.,k =1... K} of s were
n 1

independently sampled from N(0,1). The sample covariance matrix % (x - — fvg)T was
i n n

then given to the analysis routines which found Maximum Likefihood (ML}, MML with
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Normal prior (MMLN) and MML with Cauchy prior (MMLC) estimates. Each method was
tried up to three times, seeking J+1, J and J-1 OLVs., The MML methods can cause collapse
of one or more OLV estimates, and, if so, return estimates of a smaller number of OLVs.
Hence, if, say, MMLN was used seeking J+1 OLVs and returned only J/, a second use seeking
J OLVs was omitted, but a solution with J-1 OLVs still sought.

Note that estimation of the "score" vectors v was not done. The ML method cannot
J
estimate scores simultaneously with estimation of OLVs. The MML methods can, but the

directions of the score vectors can easily be eliminated from the iteration equations, and
testing concentrated on the estimation of the OLV vectors {8 } and specific variations {0y /.
i

7. Error Criteria

No factor analysis can hope to recover the true (TLV) vectors. One could attempt to
measure the error of an estimaie by comparing the estimated OLVs { 4} with the population
OLVs, i.e., the orthogonalized equivalents of {¢ /. However, the comparison is not

J

straightforward. The estimated OLVs may be more or less numerous than J, yet still useful
estimates. Further, it may not be obvious which estimate §; should be matched with which
population vector. Finally, when two population OLVs happen to be of nearly equal length,
the corresponding estimates can at best be hoped to lie somewhere near the plane, but not the
directions, of the OLVs.

We have therefore used measures of estimation error which are meamngful even if
the estimated number of OLVs J is not equal to J, and which do not require population OLVs
and estimates to be matched, Three measures have been used.

The first two measures compare the estimated specific variations {&y / with the
population values, which are all one. They are S, :I:\Z log &, and

So = %(log &), Both are zero for exact estimates. S, measures a general tendency towards

over- or under- estimation of specific variation (and so under- or over- estimation of OLV
strengths.) 8, is a simple measure of general error in any direction. These measures may
seem of little relevance, since the interest in a factor analysis lies more usually in the number
and effects of the latent variables, and perhaps in the scores. However, they are relevant to the
comparison of competing methods (eg. ML, MML}) which agree in estimating the (scaled)
QLVs as eigenvectors of the o-scaled covariance Y. If two such methods agree in their
estimates of {&, /, they will agree in their estimates of (at least the directions of) the OLVs.
Hence, getting good estimates of {o; } becomes the essence of the competition.

The third measure KL is the non-symmetric Kuliback-Leibler distance between the
data density implied by the true population parameters & and the density implied by the
estimates 6:

P(xlg)
P(x18)

KL = J dx P(x|8) log (7.1)

KL has a positive value increasing with any difference between the true and
estimated densities, It does not require the densities P(x16) and P(x | ) to have the same



nurnber of parameters, and is invariant under nen-linear transformations of the parameter
space. Thus KL measures how well an estimator recovers from the sample a model of the true
population, and is independent of how that model is expressed.

Despite the obvious difficulties, we did try one error measure based on the number
and values of the estimated OLVs. Defining an unscaled OLV as the vector

q_:[ﬂkj,kzl...K}:{ﬁkj C}'k,k:l...Kj,
J

we define the total squared OLV error as

where the minimum allows for the sign ambiguity of load vectors. The indexing of estimated
OLVs was permuted to give the least possible vatue of 3, 1.e. the best possible matching of
estimated to true vectors. To allow for the possibilities J </ and J =J + 1, the sum is defined

to include a zero vector @ = ¢ and zero estimate vectors . This measure was only used in
I+l

runs where all TLV lengths were large enough and different encugh to ensure that little
confusion about the number and matching of OLVs should arise. The unscaled vectors are
compared rather than the # vectors as the former are of more practical interest.

J

The four measures S|, §,, 53 and KL are not muteally independent, but are
sufficiently different to be all worth attention. On one run reported in section 8, we examined
the inter-measure correlations on the MMLC estimates. The highest observed product-
moment correlation was 0.52, between the S5 and KL measures. A factor analysis showed
that a single common factor could account for about 33% of the total variance of the measures.

In presenting the results from a run or series of runs, we have presented two versions
of the average error measures. In one version, labelled "Fixed J", we present and compare
results where each method was asked to estimate a model with a number of factors equal to
the true number J used in the run. The ML method always returns such a model, but the
MML methods may return a model with fewer factors (J < J) after collapse of one (or rarely,
more) OLV estimates.

In most practical application of Factor analysis, the "true" number of factors would
be unknown, and the analyst would be required to choose an estimate J if the estimator itself
does not. The second version of the results, labelled "Chosen J ", attempts to reflect this
situation, The MML methods were asked to estimate J + | factors, and could return models
with J + 1, J or fewer OLVs., The Maximum Likelihood Methed models with J + 1, J and
J —1 OLVs were compared on the basis of their log likelihoods, and the model chosen which
had the highest value of
log likelihood - A J(2K —J + 1)/2

This gives an Akaike-style model selection penalizing each free scalar parameter by the
constant A. Experiments on the results showed that, according to our error criteria, the
selection was best on average for A in the range 0.9-1.2, with the average KI, measure varying
little in this range. The "chosen J" results shown all used A = 1 except where noted.
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8. Results
In all runs, K = 16, N = 300 unless otherwise stated.

In the first series of runs, all TLV lengths = 1.0, and four runs were done with J = 2,
3,4 and 5. The MMLN method was tried with two different Normal prior scales, p = 1.0 and
p = 0.25. Note that the TLV lengths are substantially smaller than would be expected with
p = 1.0, but are near the peak of the prior TLV length density for p = 0.25. The OLV Jengths
of course vary from test to test within a run. The results are shown in table 2, for "fixed J,
and 3, for "chosen J".

The error measures shown are averages over the 1000 tests in each run, Their
standard deviations are shown in the last row of table 2. The last column of table 2 shows the
number of cases where an MML method returned a model with fewer than J factors. The last
two columns of table 3 show the number of cases when the likelihood ratio test used in the
Maximum Likelihood Method preferred J + 1 or J — | factors, and the number of cases when

the MML methods found models with J + [ or fewer than J factors,

J Method Si Sy KL J<J

ML -0.21 0.06 0.115 -
2 MMLN(1.0} -0.08 0.04 0.110 30
MMILN(0.25} 0.10 0.04 0.106 132
MMLC 0.03 0.04 0.107 106

ML -0.36 0.12 0.147 -
3 MMLN(1.0) -0.11 0.05 0.138 115
MMLN(0.25) 0.20 0.05 0.133 415
MMLC 0.10 0.05 0.134 375

ML -0.54 0.22 0.175 -
4 MMLN(1.0) -0.13 0.06 0.160 268
MMLN(0.25) 0.36 0.06 0.157 773
MMLC 0.23 0.06 0.157 716

ML -0.78 0.38 0.201 -
5 MMLN(1.0) -0.13 0.08 0.182 480
MMLN(0.25) 0.54 0.08 0.180 949
MMLC 0.40 0.07 0.179 931

Typical error 0.01 0.005 0.001
Table 2

Table 2 shows that ML, when estimating a model with the correct number of factors,
consistently underestimates the specific variations, as shown by negative values for §;. In so
doing, ML will on average overestimate the amount of data variance due to the factors. The
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effect increases with J. By contrast, the MML methods are less biassed, and, depending on
the prior, may tend to underestimate the factor loads. The S, averages show that, in terms of
the average squared fractional error in (&}, the MML methods are similar and substantially
more accurate than ML. Similar remarks apply to the Kullback-Leibler error, with MMLC
having a slight edge over other priors.

Considering the KL averages for J = 5 in table 2, the difference of 0.022 between
MMLC and ML may seem small. However, it shows a substantial improvement in the
predictive power of the MMLC model. If a second sample of size N were used to compare
the ML and MMLC estimates, it would be expected to show a likelihood ratio in favour of

MMLC of order ¢ or about 700.

J Method S Sy KL J<J I>J
ML -0.29 0.11 0.123 39 171

2 MMLN(1.0) -0.13 0.04 0.115 29 205
MMLN(0.25) 0.10 0.04 0.106 132 3

MMLC 0.03 0.04 0.107 105 8

ML -0.39 0.16 0.153 137 149

3 MMLN(1.0) -0.16 0.05 0.142 111 176
MMLN(0.25) 0.20 0.05 0.133 415 3

MMLC 0.10 0.05 0.134 373 6

ML -0.48 0.23 0.176 311 99

4 MMLN(1.0) -0.17 0.07 0.163 259 112
MMLN(0.25) 0.36 0.06 0.157 773 0

MMLC 0.23 0.06 0.157 716 0

ML -0.58 0.33 0.198 535 58

5 MMLN(1.0) -0.16 0.08 0.184 469 91
MMLN(0.25) 0.54 0.08 0.180 949 0

MMLC 0.40 0.07 0.179 931 0

Table 3

In table 3, an Akaike-style likelihood ratio test is used to choose the "best" ML
model. It is worth noting that the log likelihood ratio in favour of an ML model with
J =J + 1 over one with J = J was found not to conform to the naive approximation of a »~
distribution. For instance, the value of A in favour of J = 3 over J = 2 when J = 2 was found
to have a mean of 11.6, S.D. = 2.6, although the number of additional free parameters is 14,
None-the-less, it was found that the average error measures were minimized using a parameter
penalty constant A close to 1.0 in all runs.

Table 3 supports the general superiority of MML methods. Again, the §; measure is
similar in all MML methods, and notably less than for ML. The selection of the "best” ML
model rather than fixing J = J slightly worsens the ML errors for small J, but gives a slight
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improvement for large J, in particular a reduction in the bias measure S;. The MML error
measures are little different from those of table 1, although the tendency for MMLN with
p = 1.0tofind J > J leads to a small increase in its bias and KL error. Of all methods,
MML.C appears the most accurate.

It might be thought that ML shows a clear advantage in more often choosing the
correct number of factors. For instance, for J = 4, table 3 shows ML picks J = 3 in 311 cases,
whereas MMLC does so in 716 cases. However, this advantage is questionable. We examined
the 352 cases where J(ML) = 4, J(IMMLC) < 4, i.e. cases where MMLC fajled to find the 4th
factor but ML appeared to succeed. Over these cases, the error measures for the models
ML(J = 4), ML(J = 3) and MMLC (J < 4) are shown in table 3a.

Method J S Ay KL
ML 4 -0.58 0.26 0.18
ML 3 -0.08 0.12 0.18

MMLC <4 0.31 0.06 0.16

Errors on cases with J = 4, J(ML) =4, J(IMMLC) < 4
Table 3a

The results show that even in these cases, MMLC gave a better model of the population than
ML, by all our measures. More importantly, the ML model with only three factors was
superior to that with four factors by the S| and 5> measures, and no worse by the KL measure.
We may conclude that in the cases when ML with Akaike-style selection selects J =4, but
MMLC does not, the additional factor found by ML is on average so badly estimated as to be
misleading, and worse than useless in modelling the population.

Tables 4 and 5 give results for a similar series, with all TLV lengths = 2.0. Only
prior scale p = 1.0 was tried with MMLN. To illustrate the spread in population OLV lengths
resulting from the orthogonalization of TLVs with random directions, in the run with J =5,
the largest OLV had a mean length of 2.64 (maximum 3.4) and the smallest had a mean length
1.21 (minimum 0.66),

With the stronger factors, there is now less difference among the methods. MMLC
gave consistently the smallest KL measure. Both MML methods were superior to ML on
measure S, and less biassed according to S|. When J was freely chosen (table 5), MMLC
proved best by every measure for every J, except §|, J =5, Of all the methods, it was most
successful in picking the correct number of factors.




- 16 -

J Method S S, KL J<J
ML -0.14 0.042 0.110 -
2 MMLN(1.0) -0.08 0.039 0.109 0
MMLC -0.02 0.038 0.107 0
ML -0.19 0.055 0.134 -
3 MMLN(1.0) -0.10 0.48 0.133 0
MMLC 0.04 0.046 0.130 1
ML -0.25 0.072 0.158 -
4 MMLN(1.0) -0.14 0.058 0.155 0
MMLC 0.13 0.055 0.151 4
ML -0.32 0.105 0.180 -
5 MMLN(1.0) -0.18 0.075 0.176 1
MMLC 0.28 0.075 0.171 14
Table 4
J Method S, S, KL J<J J>J
ML -0.24 0.085 0.119 0 184
2 MMLN(1.0) -0.13 0.043 0.115 0 226
MMLC -0.02 0.038 0.108 0 23
ML -0.29 0.101 0.143 0 186
3 MMLN(1.0) -0.17 0.053 0.139 0 233
MMLC 0.04 0.046 0.130 ] 5
ML -0.36 0.121 0.166 0 181
4 MMLN(1.0) -0.20 0.064 0.161 0 208
MMLC 0.13 0.055 0.151 4 9
ML -0.44 0.159 0.188 1 184
5 MMLN(1.0) -0.26 0.084 0.182 4 235
: MMLC 0.28 0.075 0.171 13 4
Table 5

Tables 6 and 7 give "J fixed” and "J chosen" results for a run with four TLVs,
lengths 1, 2, 3 and 6. The MML methods again give lower §> and KL errors than ML. On
this run, there is little to choose between MMLN (with g = 1.0) and MMLC save that the
former gave rather better estimates of {5,/ on average, but was far more likely to find a
spurious additional factor.
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Method S\ Sy S5 KL J<J
ML -0.28 0.080 0.73 0.162 -
MMLN(1.0) -0.04 0.057 0.68 0.155 20
MMLC 0.31 0.065 0.67 0.154 101
Table 6
Method S, S, S, KL J<J J>J
ML -0.36 0.114 0.93 0.169 26 176
MMLN(1.0) -0.09 0.061 0.75 0.159 20 179
MMLC 0.31 0.065 0.67 0.154 §01 2
Table 7
J MMLN(1.0)

JML | 3 4 5
3 9] 6 1
4 1 | 767 | 30
5 0 | 28 | 148

Table 8
The J selections made by the MMLN and ML methods were highly correlated, as shown in
table 8. The ML selection can of course be modified by varying the parameter penalty

constant A. Table 9 shows the effect of varying A on the ML error measures and J selection
on this run.

A S, Sy KL J<J J>J
0.8 -0.51 0.157 0.178 7 462
1.0 -0.36 0.114 0.169 26 176
1.2 -0.28 0.088 0.164 74 50
1.3 0.25 0.081 0.163 96 i9
1.4 -0.23 0.079 0.164 133 10
2.0 -0.09 0.077 0.176 414 0

Variation of ML (chosen J) with penalty constant A
Table 9

In terms of KL error, the best result, with A = 1.3, is a little better than with A =1,
but does not equal the MML results in S, or KL measures. Of course, the best value of A has
here been chosen with knowledge of the true parameters. In practice, a value of A would have
to be chosen blindly, to give reasonable behaviour whatever the number and lengths of the

factors might be. Over the range of examples studied here, the best compromise seems to be
about 1.0 to 1.3.
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Tables 6 and 7 also show the S; measure, giving the totat squared error in the
unscaled factor load vectors after optimum matching of true and estimated vectors. This
measure also shows a clear preference for MML methods, with MMILC being the best.

A further run was performed with the aim of studying the §; behaviour of the
methods on data where there should be little confusion about the number and matching of the
OLVs. In this run, there were two TLVs of lengths 2.0 and 4.0. The results are shown in table
10. Only "fixed J" results are shown, as the objective was to compare the accuracy of
estimating the unscaled factor vectors, rather than the choice of number of factors,

Method S] S?_ 53 KL j <J
ML -0.14 0.042 0.203 0.109 -
MMLN(1.0) -0.05 0.039 0.201 0.107 0
MMLC -(0.02 0.039 0.200 0.107 0
Table 10

The results add little to the conclusions. All methods performed similarly, and the
S5, 83 and KL measures are within two standard errors over atl methods. The only obvious
feature is the usual ML tendency to underestimate {o;/, as shown by §,.

More information was gained in a run with K=18, N=500, and three TLVs of
lengths 0.7, 1.0 and 1.3. These lengths are sufficiently different to allow meaningful
comparison of methods using the §3 measure, and small enough to present some difficulty in
determining the actual number of TLVs. For ML, the best parameter penalty value was found
to be A=1.2 as measured by average KL.. Using this value, and using scale p=0.25 for
MMLN, the "chosen J" error averages and distributions of J values are shown in table 11.
The MML methods clearly recover the true distribution and OLVs better than ML.

Method 5, S, Sy KL J=1 J=2 J=3 J=4
ML -0.13 | 0.050 | 057 | 0.097 - 362 616 22
MMLN 0.13 | 0029 | 046 | 0.088 1 407 584 8
MMLC 0.08 | 0029 | 046 | 0.089 1 398 593 8
Table 11

The ML method mistakenly finds a fourth OLV in 22 cases, and the MML methods
in (the same) 8 cases. The 8 cases are a subset of the 22. Since estimates forcing J =3 were
also found for these cases, we can examine the effects of these mistakes on the error measures.
The results are shown in Table 12.
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Method j S] Sz S3 KL
ML 3 -0.25 0.07 0.8 0.106
(22 cases) 4 -0.68 0.21 1.4 0.134
Diff -0.44 0.14 0.6 0.028
MMLN 3 0.11 (0.029 0.5 0.093
(8 cases) 4 -0.10 0.031 0.8 0.102
Diff -0.21 0.003 0.25 0.009
MMLC 3 0.07 0.029 0.5 0.093
(8 cases) 4 -0.13 0.032 0.8 0.103
Diff -0.20 0.004 0.26 0.010

Error increases resulting from J > J (J =3)

Table 12

For ML, the mistake increases the error measures by much more than is the case for
the MML methods. Thus, even when the MML methods find a spurious factor, the
consequences are less serious than for ML.

There were 43 cases when MMLC chose J =2, but ML chose J =3 (40 cases) or
J =4 (3 cases). On average, for these cases, the MMLC errors were about equal to the errors
for ML with J =2, and both were substantially smaller than the errors for ML with J=J=3.
This again showed that where MML misses a factor but ML appears to find it, the ML
estimate of the missing factor is worse than useless on average.

There were 6 cases when MMLC chose J =3 but ML chose J =2, i.e. where MMLC
appeared to find a factor missed by ML with A=1.2. In these admittedly few cases, the
MMLC (j =13) errors were on average less than both the ML(Jr =2) errors and the
MMLC(J =2) errors. In only one case was the ML estimate superior, and even in that case,
MMLC(J =3) was superior to MMLC(J =2). Thus, when the MML method finds a factor
apparently missed by ML, there is high confidence that the additional factor improves the
model.

The relatively poor performance of the ML likelihood-ratio test in choosing Jis
apparent in another comparison. In the above run, ML chose J 23 in 638 cases. In some of
these cases, the ML(J =2) model was superior to the ML(J = 3) model by some of our error
measures. The number of such cases is listed for each of the error measures KL, S2 and S3 in
table 13. The table also shows, for the 600 cases when MMLC chose J =3, the numbers of
cases when MMLC(J =2) was preferred by these measures. The frequency with which the

two-factor model is more accurate than the chosen three-factor model is much lower using the
MMLC method,
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Method Total Cases J >3 KL S2 S3
ML 638 148 176 84
23% 59% 13%
MMLC 600 28 116 9
5% 19% 2%

Frequency of cases where chosen 3-factor model is
less accurate than 2-factor model.

Table 13
9. Message Lengths

In all the above test results, we have used as the "chosen J" MML model the model
with the largest value of J for which a MML solution exists. Ideally, we would prefer to chose
that MML model with the shortest message length, even if a solution exists with larger J. For
the MML method with Normal prior (MMLN) we can calculate the message length of any
model, and so could make a message-length choice. We have not done so here because the
Normal prior has a rather pronounced peak in the prior distribution of total squared factor
length, which has y” form with K J degrees of freedom. Hence the difference in message
length between MMLN models with differing J is rather strongly affected by the assumed
length scale p. In practice, we have found that while there were some cases where our
“chosen J” MMLN model had a greater message length than the MMLN model with one
fewer factors, the difference in length was always small, very rarely exceeding 2. Such a small
difference indicates little preference for either model.

We would be happier to use the message-length criterion with the "Cauchy” prior
(MMLC), which does not have a strong peak, but have not as yet found a satisfactory
approximation to the normalization constant for this prior form, and so cannot compute the
message length,

10. Conclusion

The MML method has been applied to the estimation of a Factor model for
multivariate Normal samples. In tests on a range of artificial data, the MML estimators prove
to be more accurate than the Maximum Likelihood (ML) estimator on several measures. The
MML estimators give solutions only for a certain number of factors, depending on the data.
This number appears to be a more reliable indicator of the best number of factors to estimate
than a penalized log likelihood criterion used with ML, Although, with some data sets, it was
quite common for ML to find the "correct” number of factors when MML found a smaller
number, the simpler MML model was usually the ¢loser to the true population distribution,
and the additonal factor found by ML was on average worse than useless. Both methods
occasionally find mare "factors” than the true population contained. When this occurred, the
spurious factor vitiated the MML model less than the ML model. No populations were found
for which ML consistently gave better results than MML.

Two MML estimators were developed using different prior densities for the factor
load vectors. Tests showed the relatively colourless "Cauchy” prior to be generally preferable
to a Normal prior.
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Besides being apparently more accurate, the MML estimator has the advantage of
giving estimates of the "factor scores" consistent with the estimated factors.
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