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Abstract. The question of whether or not two strings are related and, if so, of how they are related and the
problem of finding a good model of string relation are treated as inductive inference problems. A method
of inductive inference known as minimum message length encoding is applied to them. It allows the
posterior odds-ratio of two theories or hypotheses to be computed. New string comparison algorithms and
methods are derived and existing algorithms are placed in a unifying framework. The connection between
string comparison algorithms and models of relation is made explicit. The posterior probability of two
strings’ being related can be calculated, giving a test of significance. The methods are relevant to DNA and
to other biological macro-molecules.
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1. Introduction.

The inference of similarities, pattern and structure is a hallmark of intelligence. We apply a method
of inductive inference known as minimum message length (MML) encoding to problems over strings of
characters. The original motivation for this work[1] comes from the analysis of DNA strings. A DNA
sequence is a string over the alphabet of four bases {A,C,G,T}. The remarkable success of molecular
biologists in sequencing macro-molecules, which is likely to accelerate with the human genome project,
has created ample applications. The paper is framed in terms of DNA strings but the techniques apply to
strings over other alphabets such as proteins over the alphabet of twenty amino-acids and ascii strings.
Strings and languages are central to computer science and related problems occur in file comparison for
example.

It is assumed that any one string is random in the sense of Kolmogorov complexity[5,11,14]. This is
not quite the case for biological macro-molecules but it is a good approximation to the truth and it is
certainly very difficult to encode a typical DNA string in much less than two bits per character. This
assumption is not essential to the MML method but makes its application easier.

Even though an individual string is random, it may be clear that two strings are similar in some way.
This raises many questions, for example:

1. Given two strings, with what probability are they related?

2. If they are related, in what way are they related?

3. What parameters of the particular model of relation best apply to the two strings?

4. Given a set of pairs of strings, <Ai ,Bi> where Ai is known to be related to Bi, what can be inferred about

the model of relation in general?

We give algorithms to solve the first three problems for simple but useful models of relation. We discuss
how the fourth problem can be approached. In addition, existing string comparison algorithms are placed
in a unifying framework. The relation models considered are relevant to simple models of DNA mutation,
but have more general application.

String comparison is used in more complex problems. Notably, several algorithms for the inference
of a phylogenetic tree for a set of strings rely on having a matrix of pair-wise distances[3].

To illustrate the MML method in string comparison, consider a transmitter who must send two
strings to a receiver. The two parties may previously have agreed on any theories, algorithms and
conventions. If the two strings are unrelated, the transmitter can do no better than transmit one string and
then the other. If the strings are related there must be some relationship between the characters of the two
strings. If the transmitter can find a "good" theory or hypothesis about such a relationship then it may be
possible to encode the two strings succinctly. However, for the message to be intelligible it must include
details of the theory that have not been agreed on and this tends to increase the total message length. A
very detailed theory may allow a very short encoding of the strings proper but itself adds a great deal to the
message length. MML encoding defines an optimal degree of detail in this trade-off. The transmitter-
receiver paradigm keeps us honest in that anything not agreed to apriori must be included in the message.

If accurate prior probabilities for strings and relations are known, an optimal code can be designed
for them. The message length is minus log, of the probability of the event described. Often such
probabilities are not known. However a model having one or more parameters may be agreed on. A
message must include the parameter values; the best parameter values give the shortest message. Two
hypotheses may be compared on the basis of their message lengths. The more plausible hypothesis leads to
the shorter message and the difference in message lengths is minus log, of their posterior odds-ratio. If a
good null-theory can be identified, this leads to hypothesis testing: no hypothesis having a message length
longer than the null-theory is acceptable. The natural null-theory here is that two strings are unrelated,
requiring about two bits per base for its message.

There are a number of practical and theoretical advantages to MML encoding as a method of
inference. It focuses attention on the language being encoded, on what it can express and on the
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probabilities of messages. If accurate prior probabilities are not known, nevertheless all the techniques and
heuristics of data-compression and of coding theory[10,12,25] can be used to get a good code (theory).
MML encoding is safe in that the use of suboptimal encoding for a proposed theory cannot make the theory
appear more acceptable than it should be. Where parameters over continuous domains are involved, MML
encoding defines an optimal degree of precision for their estimates.

Central to the string problems is the definition of relatedness. There can only be one good universal
definition and it must be related to the Kolmogorov complexity of a program to produce the two strings.
This is not computable in general but fortunately simpler and yet plausible models exist. These are for the
most part based on finite-state machines or other simple machines. It turns out that commonly used string
comparison algorithms correspond to such models and we have been able to formalise this practice in the
MML framework.

The MML method enables two theories or hypotheses to be compared objectively. It does not say
how to invent such a theory although algorithms and heuristics may be apparent in some cases. In general,
problem knowledge, such as biochemical knowledge, can and should be used to formulate new theories.

Note that the algorithms described here do not actually encode any messages although we often write
as though they do. Rather, they calculate only the lengths of messages.

Solomonoff[20] proposed MML encoding as a basis for inductive inference. Wallace and
Boulton[22] produced a practical classification algorithm using the technique. A good introduction to the
MML technique was given by Georgeff and Wallace[8]. Wallace and Freeman[23] described the statistical
foundations of MML encoding. It has had many applications, for example Chong et al[6] have employed it
in classifying images of clouds.

In string comparison, Reichert et al[7,15,26] considered the brief encoding of pairs of strings for a
single model of relation. Bishop et al[2] gave a maximum-likelihood method to infer the time since two
related strings diverged which is very similar to our method for a one-state model. Sankoff and
Kruskall[17], Waterman[24] and Bishop and Rawlings[3] give surveys of string comparison methods and
applications.

In what follows, many messages must include one or more integers such as string lengths. In order to
encode them, a prior probability distribution for integers must be assumed. When there is no information to

the contrary, we use Rissanen’s[16] universal 10g2>k prior as the default. Some alternatives are discussed in

[1].

2. One-State Models.

There are at least two general models of relation between strings based on simple translation
machines, which may be called the generative and mutation models. In the generative model, a simple
machine reads an input string of generation instructions in a special alphabet and outputs the two given
strings in parallel. In the mutation model, a different simple machine reads two inputs in parallel. One
input is one of the given strings. The other input is a string of mutation instructions in a special alphabet.
The machine outputs the second given string. For the restricted relation models we consider, it can be
shown that to every generative model there corresponds a mutation model and vice-versa. In what follows
we adopt the generative form, but our use of the words ‘insert’, ‘delete’ and ‘change’ for certain generative
instructions is common practice inherited from the mutation form. An indel is either an insert or a delete.
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generation
instructions string A string B

match (A) A A
match (C) C C
insert (G) G
match (T) T T
delete(A) A

match (C) C C
change(G,C) G C
match (T) T T

An Example.

A sequence of generative instructions represents a specific relation or alignment between two strings.

It is common practice to assign weights or costs to each instruction. The cost of an instruction
sequence is the sum of the costs of its instructions. Given strings A and B, an instruction sequence that
generates A and B and achieves the minimum possible cost gives an optimal alignment. The minimum cost
defines a function D(A,B) on strings. Writing D[i,j] for D(A[1..i],B[1..j]), D can be calculated by the well
known dynamic programming algorithm (DPA). Here for simplicity only, we assume that all matches have
an equal cost, all changes have an equal cost and all indels have an equal cost.

Boundary Conditions:

D[0, 0] =0
D[i, 0] = indel x i, i=1..|A|
D[0, j] = indel x j, j=1..|B|

General Step, i=1l..|A| and j=1..|B
D[i,j] = min( D[i-1,j ] + indel,
D[i ,j-1] + indel,

D[i-1,j-1] + if A[i]=B[Jj] then match else change )

The Dynamic Programming Algorithm.

The choice of minimum made in the general step of the DPA defines a path from D[0,0] to D[IAI,IBI] which
gives an optimal alignment.

One choice of costs for the DPA is to cost matches at zero and changes and indels at one. In this case
D(A,B) is a metric known as Sellers’[18] metric. If matches cost zero, changes cost one and indels cost a
half, then an optimal alignment contains a longest common subsequence (LCS). Common practice in the
choice of costs is ad hoc and there is no objective way to judge what are good costs or what particular costs
imply about the relation of strings. Here, we relate costs to probabilities of generative instructions. If
something is known of these probabilities, this gives an objective way to choose costs. If probabilities are
not known, it allows them to be inferred from given strings.

To encode an alignment of A and B, we transmit a string of match, change, insert and delete
instructions. Note that the number of instructions must be included in the message. The probabilities of
the instructions are required to design an optimal code. Here we assume a simple one-state machine.
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p(m) match
p(c) change
p(i) insert (in A or delete from B)
p(d) delete (from A or insert in B)

p(m) + p(c) + p(i) + p(d) =1
symmetry: p(i) = p(d)

One-State Machine.

Almost invariably we want p(i)=p(d). The length of (a code word for) an instruction includes a contribution
for the characters of the strings. The length of a match or indel is minus log, of the probability of the

instruction plus two bits for the character involved. The length of a change is minus log, of the probability
of a change plus log,(12) bits for the two differing characters. We use these instruction lengths as costs in
the DPA.

Given fixed probabilities and two strings, two alignments can be compared on the basis of their
message lengths. The more plausible alignment has the shorter message length. The difference in message
lengths gives log, of the posterior odds-ratio of the alignments.

Usually, probabilities of instructions are not known in advance and must then be included in the
encoding of an alignment. One method is to use an adaptive code based on running counts. Alternatively, a
header to the message states the probabilities used to an appropriate accuracy. The two methods give very
similar message lengths[4].

The optimality of an alignment depends on the probabilities used. When these are not known in
advance, a search is necessary to find good values. Reasonable initial values are assumed and an alignment,
optimal for these probabilities, is obtained. Probabilities for the next step are obtained from instruction
frequencies in the alignment. The process converges in a few steps. A small number of initial values must
be tried because of local minima.

Note that an arbitrary table of costs for generative instructions implies certain probabilities. These
can be discovered by normalisation. The optimal alignments produced by the DPA are invariant if all costs
are multiplied by a constant k>0 and if a constant j is added to the indel costs and 2j is added to other costs.
Starting from some table of costs, eg. for Sellers’ metric, one can choose j and k to give modified costs
which give the same optimal alignments and which can be interpreted as negative log,s of probabilities.

normalised
Sellers Sellers LCS-metric MML alignment

match 0 23 0 -log,(p(m))+2
change 1 k+23 1 -log,(p(c))+log,(12)
insert 1 k+7 1/2 -log,(p(i))+2
delete 1 k+3 1/2 -log,(p(d))+2

Some Specific Costs for the Dynamic Programming Algorithm.

The probabilities must sum to one and give an expression for k in terms of j. There is one degree of
freedom remaining which gives a set of probabilities under which the optimal alignments produced are
invariant. Exercising this degree of freedom varies the probabilities of alignments but does not change their
rank-order. Normalisation enables the probabilities implied by Sellers’ metric, for example, to be
calculated.
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Costs Probabilities
J k Cmatch Cchnge Cindel Pmatch Pchnge Pi=Pd

1.2 4.57 2.40 6.97 5.77 0.758 0.096 0.073
1.4 3.48 2.80 6.28 4.88 0.574 0.154 0.136
2.0 1.87 4.00 5.87 3.87 0.250 0.205 0.273
3.0 0.34 6.00 6.34 3.34 0.062 0.148 0.395

Some Instruction Costs and Probabilities Equivalent to Sellers’

Any similar metric, such as that corresponding to the LCS problem, can be normalised in this way.

For given costs, optimal alignments are not unique in general. All optimal alignments and indeed all
non-optimal alignments contribute to the probability of A and B being related in some way. This has been
recognised by Bishop etal[2]. Even for two identical strings, eg. ACGT:ACGT, there is a small
contribution from sub-optimal alignments and the shorter the strings are the less certain can we be that they
are related! In computing an MML alignment, D[i,j] is minus the log, of the probability that A[1..i] and
B[1..j] arose through being related in one most probable way. The ‘min’ in the general step of the DPA
corresponds to choosing the maximum probability. If probabilities are instead added, for they correspond
to exclusive events, then D[i,j] is the (-log,) probability that A[1..i] and B[1.,j], and ultimately A and B,
arose through being generatively related in some unspecified way. We call this the r-theory. As before, it is
necessary to iterate to discover the probabilities to use in encoding the theory. To do this, frequencies of
instructions are computed in D in a weighted fashion according to probabilities of transitions.

The null-theory is that strings A and B arose through being unrelated and this is the complement of
the r-theory. The null-theory is encoded by encoding string A and then encoding string B. Note, the
lengths of A and B must be included - see later. The odds-ratio of the strings’ being related against their
not being related is equal to the binary exponential of the null-theory length minus the r-theory length. It is
then simple to calculate the posterior probability of the strings being related.

Running the r-theory algorithm in reverse, D’[i+1,j+1] is the (-log,) probability that A[i+1..|Al] and
B[j+1..1Bl] arose through being related. Thus, D[i,j]l+D’[i+1,j+1]-D[IALIBI] is the (—logz) probability that

the "true" alignment related A[1..i] to B[1..j] and A[i+1..IAl] to B[j+1..IBI], given that A and B are related.
A density plot of this function is a good way of visualising possible alignments.

ACGT key MML plus Probability

. . [0..1] bits [1..1/2]
A: . # (1..2] bits (1/2..1/4]
c: . + (2..4] bits (1/4..1/16]
G: ) . - (4..8] bits (1/16..1/256]
T: C. . (8..16] bits (1/256..1/2%6]

r-theory 16.3 bits null-theory 24.6 bits
P(related) = 0.99

Alignment Probability Densities ACGT:ACGT

For identical strings, there is near but not absolute certainty of the obvious alignment. For non-identical
strings the picture can be more interesting:
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ACTAGCT CCAACCANA

LI . o # + - . .

Poe - L. PHE#EH -
C: v e - . Ay e # oL
G: e+ . N
T:.._.+_. C: S H o+ # -
Ar e - S R
: -##H - T R
G: Co-# e - : e
: —— C: et # e
ACGTACGT:ACTAGCT AACCAACC:CCAACCAA
r-theory 38.9 bits r-theory 44.1 bits
null-theory 40.7 bits null-theory 42.9 bits
P(related) = 0.78 P(related) = 0.4

Alignment Probability Densities.

Note the area of uncertainty marked by ‘#’ where ‘CG’ is aligned with ‘GC’ for the first pair of strings and
the branch for the second pair. The examples above were created to exhibit certain features; in general
results for such short strings should be treated very cautiously.

The r-theory message includes the (weighted) number of generative instructions. The null-theory
message must include the length of string A and of string B. If these two lengths are encoded
independently then it gives a penalty to the null-theory and favours the r-theory for strings of similar length.
In some circumstances this may be appropriate but we do not generally consider strings similar only on
grounds of length but require similarity of structure also. The generative model with p(i)=p(d) has a built in
expectation that the difference in the lengths of A and B is O(V(IAl+Bl)). We build a similar expectation

into the null-theory and transmit |Al+IBl using the logz* prior and |AI-IBI using a binomial prior. If

p(i))=p(d)=1/2, the r-theory and the null-theory have the same prior over the difference in lengths. When
p(i)=p(d)<1/2 the r-theory has a tighter distribution on the difference. Thus extreme similarity of length
still favours the r-theory in the absence of genuine structural similarity, but the message length difference
caused by this effect is at most O(log(IAl+IBl)) and is only present if abs(IAl-IBl)<<V(IAl+IBI).

Figure 1 plots the average message length of the r-theory against homology for strings of equal
length. The homology is the fraction of characters matching in an optimal alignment (in this case a Sellers
alignment) and is commonly used as a measure of similarity. When trying to judge the significance of
homology it is common practice to scramble the letters in the two strings and recalculate the homology for
a base-line figure. This procedure is not necessary with the MML method which has a built in and rigorous
test of significance. The data for figure 1 were generated by mutating strings with homology one (identical)
or zero by various amounts using a mutation model in which changes, inserts and deletes occur in the ratio
2:1:1. Note that for long strings, the null-theory is encoded in approximately two bits per character. Note
also that very low homology (consider AAAA:CCCC) supports the r-theory because the strings are related
in a negative way.
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3. Finite State Models.

More sophisticated variations on the dynamic programming algorithm are often used in molecular
biology. The basic DPA gives a run of L inserts (or deletes) a cost proportional to L. Linear cost functions
w(L)=a+bxL are more commonly used for indels. The constants a and b are chosen by experimentation
but a=3 and b=1 are typical in work on DNA. As before, matches commonly cost zero and changes cost
one. The constant ‘a’ is a start-up cost and discourages large numbers of small indels being inferred. This
is found to be plausible biologically. Gotoh[9] gave a fast O(IAIxIBI) algorithm for such costs. In brief, the
algorithm maintains three values in each cell of the matrix D. It maintains a value for each possible
direction of arrival and a cell can be computed by examining just three neighbours.

The linear costs can be related to probabilities of instructions for a generative machine using the
techniques of the previous section. One possible interpretation is a one-state machine with modified insert
and delete instructions. These instructions are now taken to insert and delete strings rather than single
characters. The alignments produced by Gotoh’s algorithm are invariant when the costs are multiplied by
k>0 and when 2j is added to every character match and change and jL is added to every indel of length L.
Summing the probabilities to one gives an expression for k in terms of j. This enables the probabilities
implied by particular costs to be recovered. As before, one degree of freedom remains.

A second interpretation of the linear costs gives a three-state generative machine with simple
character instructions. A match or a change always leaves the machine in S , an insert leaves it in S, and a
delete leaves it in S;. Costs are conditional upon the current state.

S,: match/change-state
S,: insert-state and
S3: delete-state

p(m|S;) + p(c|s)) + p(ilsy) + p(dls)) =1, 3=1,2,3

Symmetry: p(i|s,) = p(d[s,),
p(m|S,) = p(m]S,),
p(c|s,) = p(cls,),
p(d|s,) = p(ils,)

Three-state model.

In general, a three-state model cannot be normalised unless a constant x>0 is subtracted from the cost of
entering S, (and S,) and added to the cost of leaving it. This does not change the alignments inferred.

Probabilities of instructions in each state sum to one and this gives two equations in j, k and x. One degree
of freedom remains giving a family of values for j, k and x and the implied probabilities.
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Costs Probabilities

j k x Cmatch Cchnge Cinsrt Cdelet Pmatch Pchnge Pinsrt Pdelet
1.2 3.23 0.29 2.40 5.63 13.84 13.84 0.758 0.242 0.000 0.000
2.69 5.93 4.43 14.43 0.618 0.197 0.185 0.000

1.4 2.07 0.63 2.80 4.87 9.05 9.05 0.574 0.411 0.008 0.008
3.43 5.50 3.47 10.31 0.371 0.265 0.361 0.003

2.0 0.84 0.79 4.00 4.84 4.59 4.59 0.250 0.418 0.166 0.166
4.79 5.63 2.84 6.16 0.145 0.242 0.557 0.056

Normalising 3-state model for match=0, change=1, indel(L)=3+1xL

The second interpretation of linear costs as a three-state machine is preferred as it easily allows an r—theory
algorithm to be run in a forward and reverse direction and the results to be combined to give a density plot.

In general, the costs in Gotoh’s algorithm can be varied to reflect the probabilities of instructions and
the algorithm then produces an MML alignment. When probabilities are not known they can be discovered
by iteration. We also modify Gotoh’s algorithm, rather as the basic DPA was modified, to add probabilities
and to produce a weighted sum over all possible alignments. This gives the r-theory of the three-state
model. Figure 2 gives an example of a probability density plot.

If any problem-specific knowledge is available, it can and should be used to design new models of
relation. First, a language must be designed which has appropriate expressiveness. Second, an optimal (or
at least a good non-redundant) coding scheme must be devised for the language. Finally, an algorithm or a
heuristic must be designed to infer plausible hypotheses. For example, it is apparent that some pairs of
DNA strings have related regions and unrelated regions. The related regions are not necessarily identical.
A language to express this possibility might contain character-based instructions as before plus long-insert
and long-delete instructions. The latter instructions apply to reasonably large substrings. Assume that long
indels are rare events and that their lengths have a geometric distribution with a large mean. The 3-state
machine can be augmented with two new states to model this situation.

S,: match/change

S,: short-insert state
S, short-delete state
S,: long-insert state
S.,: long-delete state

Five-State Model.

The dynamic programming algorithm can be modified to maintain five values - one for each state - in each
cell of the matrix D and to sum probabilities much as before. As before, parameter values can be estimated
by iteration. The new algorithm now calculates the r-theory for the new model. Note that a run of inserted
characters is not classified absolutely as long or short. Rather it is treated in a weighted fashion as both
long and short. To be sure, an insert of one or two characters almost certainly implies a short insert and one
of many characters almost certainly implies a long insert - almost.

The model just defined also solves the problem of finding substrings or patterns common to two
strings. The following special case is of interest in molecular biology and has been examined by
Sellers[19] and others:

string A: V;W;X
string B: Y;W’';Z

LA Computer Science, Monash University 1989
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W and W’ are related but V and Y are unrelated as are X and Z.

4. Other Models.

There are a great many models of relation between strings. An important class of model is based on
simple finite-state machines. The inference algorithms are variations on the dynamic programming
algorithm. Each model is defined by probabilities of machine instructions and by probability distributions
on the run-lengths of blocks of matches, changes and indels. The Sellers’ and the linear-cost algorithms
discussed above imply geometric distributions for run-lengths. A linear cost amounts to using a unary code
which is optimal for a geometric distribution. Millers and Myers[13] gave an O(lAIxIBl) alignment
algorithm which enables downward-concave cost functions to be used. After normalisation and modulo the
characters, a cost function w(L) implies a probability distribution 2™ on lengths. Any problem-specific
knowledge of actual probabilities can be built into a cost function. Conversely, if a particular cost function
performs well it gives information about mechanisms applying to strings.

Other types of relation model are possible. For example, Tichy[21] gave a linear-time algorithm to
find the minimum number of block-moves necessary to edit one string into another. Block mutations such
as duplicates, reversals and complements are known to occur in macro-molecules. The MML method
allows such rival models to be compared on real strings.

5. Conclusions.

We used minimum message length encoding to infer and compare theories over strings. MML
encoding makes explicit the connection between a string comparison algorithm and a model of relation.
For a given model, the odds-ratio of two alignments can be calculated. The r-theory is the weighted union
of all possible alignments. Since there is a natural null-theory, the posterior probability of two strings’
being related can be calculated. An algorithm to find substrings or patterns common to two strings was also
given. Given enough data, the MML method allows models of relation for "real" strings to be compared
and, in principle, the "true" model to be inferred. The methods are clearly applicable to mutating strings
such as DNA and other macro-molecules.
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