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This paper describes a Minimum Message Length (MML) approach
to �nding the most appropriate Hidden Markov Model (HMM) to
describe a given sequence of observations. A MML estimate for the
expected length of a two-part message stating a speci�c HMM and
the observations given this model is presented along with an e�ective
search strategy for �nding the best number of states for the model.
The information estimate enables two models with di�erent numbers
of states to be fairly compared which is neccessary if the search of this
complex model space is to avoid the worst locally optimal solutions.
The general purpose MML classi�er `Snob' has been extended and the
new program `tSnob' is tested on `synthetic' data and a large `real
world' dataset. The MML measure is found to be an improvement on
the Bayesian Information Criteria (BIC) and the un-supervised search
strategy e�ective.

1 Introduction

Classi�cation, also known as mixture modelling or clustering, is the building of models
from sets of observations where each observation is assumed to have been generated
from one of a �nite number of classes. A classi�cation model speci�es the number of
such classes and a distribution over the observations expected for each. Un-supervised
classi�cation programs attempt to �nd the most likely class structure and parameteri-
sation given a set of observations. This task requires that a balance be struck between
model complexity and explanatory power. The best model will be su�ciently complex
as to avoid discarding information implicit in the observed data, but not so complex
as to be �tting noise in the observed data (over �tting).

A partial solution to this problem was presented in earlier un-supervised classi�-
cation work by Wallace and Boulton (1968) and subsequently generalised by Wallace
(1987,1990). A Minimum Message Length (MML) information measure was proposed
that would estimate the length of an optimal two-part message stating a model and a
set of observations given the model stated. Such a message length gives a fair measure
by which any two competing classi�cation models can be compared.

This earlier MML classi�cation work was designed to model randomly sampled
data and hence assumed independence between observations in a dataset. In this
paper we present a MML based approach to the un-supervised classi�cation of a
sequence of observations which takes advantage of some of the extra information
available in such data. Speci�cally the data is modeled as if it were generated from
a �rst order Markov process with as many states as there are classes of observation.
The state of such a process at any point in the sequence determines the class from
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which the corresponding observation is generated. Such a model is commonly re-
ferred to as a Hidden Markov Model (HMM) which although not appropriate for all
types of sequential data is none the less of signi�cant practical interest. For a good
introduction to these models which are rich in mathematical structure and have been
used extensively in the area of speech recognition refer Rabiner (1989). An iterative
solution for these models was �rst proposed by Baum et al. (1970). The technique
applied was an Expectation Maximisation (EM) method later generalised by Demp-
ster et al. (1977). Later work by Leroux and Puterman (1992) improved on the work
by Baum by using a Bayesian Information Criteria (BIC) to estimate the complexity
of a given HMM model and hence they were able to compare two HMMs with a
di�erent number of states. However, these works su�ered from the lack of a suitable
search method for larger model spaces and also from the surprising notion that there
can ever be enough observational evidence to justify a probability of zero (or one)
when estimating model parameters. This in turn led to zeros being preserved in the
transition matrix and the possibility of a search being trapped in such a solution.

We extend this earlier work by deriving a MML information estimate for such a
model, an improvement on the approximate BIC estimate, and we specify a e�ective
search method of this complex model space which is guided by this measure.

The MML classi�cation program `Snob' of Wallace (1990) has been re-implemented
and extended in order to model �rst order Markov processes. The new program,
tSnob, is a more portable implementation of the MML classi�er written in the C
programming language. The program is designed to model multi-variate data with a
�xed number of attributes. The type of these attributes can be discrete, continuous
or angular these being modeled by multi-state, Gaussian or von Mises distributions
respectively. Attribute values are assumed to be independently distributed within a
class and the model correctly handles observations with missing attribute values.

The MML modelling approach taken is Bayesian in nature and strong parallels
exist between Snob and the Bayesian classi�er Autoclass produced by Cheeseman
(1988). The two methods are contrasted in Wallace (1990).

2 MML Basics

Within the MML paradigm, models are judged by their ability to reduce the expected
length of a message sending our model (the hypothesis) to an optimal precision and
our observations given this model (the evidence) to a receiver who initially only shares
our prior beliefs. The best model will minimise the length of this two-part message.
No model that fails to compress the evidence can be considered superior to the empty
model (null hypothesis).

These two message parts are used as estimates for P (H) and P (DjH) in Bayes
Theorem.

P (H&D) = P (H):P (DjH) = P (D):P (HjD)

For any one particular dataset P (D) is constant, so maximizing P (H&D) also max-
imizes P (HjD). This gives an fair criterion which we can use to compare any two
hypotheses based on a given set of observations.
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Wallace and Freeman (1987) gives the general form of such a MML estimate (given
an appropriate likelihood function and a stable prior) as

ML(H&D) � � ln h(H) + 1
2
ln det(F (H))� ln f(DjH) + g(np)

where h(H) is a prior distribution over parameter values, F (H) is the Fisher Infor-
mation matrix, f(DjH) is the likelihood function for the model, g(np) is a function
of the number of parameters being estimated, and the unit of the result is natural
bits or nits (divide by ln 2 to convert to bits).

The objective function for tSnob is constructed using three such MML expected
optimal code length estimates. They predate the derivation of the general form, but
are close approximations.

The �rst of these is the multi-state distribution where observed values are discrete
and come from a �nite unordered set of possibilities. From Wallace and Boulton
(1968) the optimal MML code length to transmit K values from an M state multi-
state distribution (assuming a uniform prior over the possible combinations for the
frequencies of the observed values) is:

ML(H&D) � M�1
2

(ln K
12
+ 1)� ln(M � 1)!�PM

m=1(n[m] + 1
2
) ln p[m]

where n[m] is the number of values in state m and p[m] is the probability stated for

state m and is re-estimated as p[m] =
n[m]+ 1

2

K+M
2

.

The second is the Normal distribution where values are continuous reals stated to
a speci�ed accuracy. FromWallace and Boulton (1968) the optimal MML code length
to transmit K values from a normal distribution with mean, �, standard deviation, �,
and measurement accuracy, ", from a global distribution with mean, �p, and standard
deviation, �p, (assuming � has a uniform prior in the range �p � 2�p and ln � has a
uniform prior in the range ln " to ln �p

p
2�) is:

ML(H&D) � � ln(4
q

K
12
�p
�
)� ln(ln(

p
2��p
"

)
q

K�1
6
)�K ln(�

p
2�
"

+ 1
2
) + 1

2

and � is re-estimated as
q

v
K�1

where v is the sample variance.

Finally, we consider the von Mises distribution detailed in Fisher (1993) for mod-
elling angular values stated to a known accuracy. It has mean direction � and con-
centration parameter �. Letting I0(�) be the relevant normalisation constant, it has
probability density function

f(xj�; �) = 1
2�I0(�)

e�: cos(x��)

which for small � tends to a uniform distribution and for large � tend toward a Normal
distribution with variance 1=�. This is a circular analogue of the Normal distribution
- both being maximum entropy distributions. The MML estimate for the von Mises
distribution is less compact and can be found in Wallace and Dowe (1993).
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3 Calculating the Message Length of Model and Data

In this section we de�ne the calculation for the expected length of a near optimal mes-
sage encoding a speci�c parameterisation of our Markov classi�cation model (stated
to an appropriate accuracy) and a sequence of observations given this model. We de-
rive the length of such a message by �rst stating the length of a non-optimal encoding
and then deriving the length of the optimal encoding by argument.

Our encoding consists of four parts. Part (a) states the number of classes in
the model. Part (b) states the relative abundance of these classes. Part (c) states,
for each class, the distribution parameters and the relative abundance of each class
conditional upon being proceeded by this class. Finally part (d) states, for each
observation, an assigned class and the attribute values given this class. Parts (a),(b)
and (c) constitute our hypothesis, H, and part (d) is one possible encoding of our
data, D, given this hypothesis.

In part (a) of our message all values for the number of classes, N , are considered
equally likely so stating N is assumed to have some unknown constant cost. As we
only use this calculation to compare models we can safely omit part (a).

The length of part (b) of our message is the cost of sending the description of a
multi-state distribution which could be used to assign each observation (K in all) to
a particular class (N possibilities).

The code length required to describe a class, ci, can be closely approximated as
the sum of the optimal code lengths required to state the parameters describing each
attribute. The message length of part (c) of our message is the sum of these individual
class message lengths and additionally another N multi-state distributions specifying
the class distribution for next observation given the class of this observation. Each of
these additional multi-state distributions encodes a proportion of the total number
of observations as speci�ed by the class relative frequency stated in part (b).

One caveat of note in this current implementation of tSnob is that this calculation
is a conservative encoding of the N2 transition matrix (the optimal message is slightly
shorter). An optimal encoding of this transition matrix is not known to the authors.
However, one should be able to save something like one row of the matrix. Speci�cally
our estimate is calculated assuming independence between rows in the transition
matrix. This is clearly not the case (there are fewer degrees of freedom), however,
this assumption yields a close approximation that is only slightly biased toward more
conservative models. In turns out experimentally that part (b) of the message can be
omitted with out any over-�tting of data and so the experimental results stated use
this more aggressive measure.

Once parts (a),(b) and (c) which constitute our hypothesis, H, have been trans-
mitted we can transmit part (d), the actual observations we have, by selecting a class
for each observation and encoding each observation accordingly. An observation is
coded as the sum of the optimal encoding for each attribute value using the stated
class with missing attribute values coding as zero length messages (i.e. the receiver
is assumed to know a-priori which attributes are missing). The class of the �rst ob-
servation is speci�ed using the un-conditional multi-state distribution stated in part
(b) of the message and the class of each successive observation is speci�ed using the
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appropriate conditional multi-state distribution as stated in part (c) of the message
(i.e. based on the class of the preceding observation). In this way it is possible to
calculate the length of one possible decodable message. We can consider any one such
assignment of observations to classes as a path through our data and note that with
N classes and K observations there are NK such paths. A message stating any one
such path will not be an optimal encoding of the data given the model. However, we
can now calculate the probability (and hence the length) of the optimal message by
summing over all of these NK sub-optimal encodings.

Summing these NK probabilities appears to be a formidable task. However, if
we consider our encoding process as a state machine, we �nd that our model is left
in only one of N possible states after the encoding of any observation. So for any
observation, we can calculate the sum over all paths that lead to one of our N states
based on the N sums calculated for the preceding observation.

As the only messages we consider are pre�x codes (ie. uniquely decodable) we can,
for notational convenience, de�ne a mapping from message lengths to probabilities as
Pml(x) = e�ML(x) where Pml(x) is the probability that we will send a message, x, of
length ML(x) nits.

We de�ne Pml(cijcj) to be the probability associated with a message stating that
an observation from class i follows an observation from class j and Pml(okjci) to be
the probability associated with a message stating the attribute values associated with
observation k using class i. We can now de�ne F (ok 2 ci) to be the sum over all
paths (messages) that lead to and include an encoding of observation k as a member
of class i as

F (o1 2 ci) = Pml(ci):Pml(o1jci)
F (ok 2 ci) =

PN
j=1 F (ok�1 2 cj):Pml(cijcj):Pml(okjci) ; 1 < k � K

and �nally

P (DjH) =
PN
i=1 F (oK 2 ci)

which is the sum over all the possible encodings of our data given our model.

The message length of parts (a), (b) and (c) give us P(H), and we can calculate
P (DjH) so we now have P (H&D). This is the objective function that the tSnob
program maximises by minimising it as a message length.

4 Searching the Model Space

The complexity of this �rst order Markov classi�cation model space increases dra-
matically with the number of classes as does the probability of �nding locally optimal
solutions. Our search of this model space attempts to avoid local optima by limiting
the complexity of our model (the number of classes) at any one time to that justi�ed
by our MML information measure. To this end we divide the search into two sub-
problems. Searching for the best parameterisation of a model with N classes, and
�nding the best value for N .
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4.1 Improving the Parameter Estimates

We improve the model parameterisation given a particular class structure by the
repeated application of an EM re-estimation step. In order to apply the EM algorithm
on this problem it is necessary to consider the optimal assignment of each observation
to the N classes independently of the assignment of any of the other observations
in the sequence. In fact we wish to calculate the sum over all the NK�1 possible
encodings of our dataset that specify any one of the N states for any one observation.

To achieve this we can de�ne a backward sum over all possible paths that lead
from a classi�cation of class i for observation k to the end of the data sequence as

B(oK 2 ci) = 1
B(ok 2 ci) =

PN
j=1 Pml(cjjci):Pml(ok+1jcj):B(ok+1 2 cj) ; 0 < k < K

We can now de�ne the contribution of the class i for observation k to the �nal P (DjH)
to be

P (DjH; ok 2 ci) = F (ok 2 ci):B(ok 2 ci)
and note that

P (DjH) =
PN
i=1 P (DjH; ok 2 ci) ; 8k 2 [1; K]

Once we have calculated these N sums for any particular observation we can
calculate the relative contribution of each of the N states to the encoding of the
entire sequence, P (DjH). With this information we can correctly re-estimate all the
class distribution and transition parameters. This calculation di�ers from the usual
forward-backward maximum log likelihood calculation in that the appropriate MML
message lengths used may also include small penalty terms which depend on the
accuracy to which the corresponding distribution is speci�ed in the hypothesis.

4.2 Selecting the Best Number of Classes

In order to select the best number of classes we employ a variation on the class
splitting and merging search procedure implemented in the original snob program
described in Wallace (1990). At any one time we consider a speci�c N class model
and we move toward the best solution in this model space. However, it turns out that
by calculating this we can also easily search a useful subset of the N + 1 and N � 1
class models. If a model in either subset turns out to be more likely than our current
N class model then we switch our focus, N , to the better model space. In this way
a simple model will shift to the more complex hypothesis spaces only when this is
justi�ed by the MML objective function. Having an accurate information measure
to guide this shift in focus is essential to get good initial parameter estimates in the
more complex model spaces and thus avoid the worst of the locally optimal solutions.

We only consider one model in each alternate model space at any particular time.
These models are constructed from the current N class model and given a limited
number of improvement cycles in which to yield a better solution than the current
model. If a better solution is not soon found then alternative N�1 and N+1 models
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are constructed and the process repeated. The selection of candidate models in these
other model spaces is guided by message length estimates based on the current N
class model. These estimates give an upper bound for the true message length in
the alternate model spaces. The most promising change that has not been recently
evaluated is selected in each case.

We calculate N estimates in the N + 1 model space. These being where any of
the current N classes is split to form two new classes while the other N � 1 classes
are kept the same. This is achieved by maintaining a hidden two class split model
within each of the current N classes. These split models are initialised by random
assignment from the corresponding model class and then re-estimated on each pass
of the dataset. To speed up the re-estimation process the observations are assigned
to one split class or the other for the �rst three cycles and thereafter probabilistically
by EM. The split models are periodically re-initialised in order to search for di�erent
asymmetries in the data.

We calculate NC2 estimates in the N�1 class model space. These being where any
two classes are combined into one class while all the other classes remain unchanged.
These estimates are derived by adding the observation statistics for candidate merge
classes and then calculating the revised expected message length for the new model.

This class splitting and merging search di�ers from that of the original Snob
program in that the message length estimates are only used to select candidate split
or merge models. The complete model message length evaluation is still required
before such a model can be selected as the new focus of the search. Naturally when
we split or merge classes to generate a new model, care must be taken that all the
starting values for the class transition probabilities are reasonable.

Practically speaking, the repeated application of these two model search methods
is an e�ective search strategy (the EM algorithm may of course converge to a local
minimum).

5 Experimental Results

In this section we compare MML and BIC classi�cation models on a variety of di�cult
`synthetic' datasets. We also consider the MML model on a di�cult `real-world'
dataset.

5.1 Generating Synthetic Data

The general aim here has been to generate some tough multivariate testing datasets
using a generator with a minimal number of parameters. The Data generated has
two continuous attributes generated from Gaussian distributions. As the number of
classes varies the class attribute means are chosen so that the classes are evenly spaced
around the circumference of a unit circle with the standard deviations �xed at 0:5.
The class transition matrix used to generate the data has probabilities of 0:8 for the
diagonal elements with all other probabilities being equal (i.e. 0:2

N�1
for N class data).
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Table 1: Model Selection Comparison

Model Best MML model (%) Best BIC model (%)

N K 1 2 3 4 5 6 7 1 2 3 4 5 6 7

5 100 6 58 36 - - - - 4 60 36 - - - -
177 - 4 72 24 - - - - 10 78 12 - - -
316 - 2 20 66 12 - - - - 32 66 2 - -
562 - - 2 22 76 - - - - 10 34 56 - -
1000 - - - - 100 - - - - - 15 85 - -
1778 - - - - 100 - - - - - 4 96 - -
3162 - - - - 100 - - - - - - 100 - -

6 100 5 45 50 - - - - - 60 40 - - - -
177 - 16 70 14 - - - - 16 80 4 - - -
316 - - 35 65 - - - - - 45 55 - - -
562 - - 6 54 36 4 - - - 10 82 8 - -
1000 - - - 10 20 70 - - - - 25 55 20 -
1778 - - - 2 4 94 - - - - 4 2 94 -
3162 - - - - - 100 - - - - - - 100 -

7 100 10 65 25 - - - - 10 60 30 - - - -
177 - 18 76 6 - - - - 20 76 4 - - -
316 - - 50 50 - - - - - 75 25 - - -
562 - - 2 84 14 - - - - 10 88 2 - -
1000 - - - 5 65 30 - - - - 40 60 - -
1778 - - - 5 10 55 30 - - - - 34 66 -
3162 - - - - 5 - 95 - - - - 5 10 85

5.2 Comparing Model Selection Criteria

The MML model was compared against a BIC model for datasets with between 1
and 7 classes with dataset sizes varying between log10 1 and log10 3:5. The results for
4,5 and 6 class data are presented in table 1. The BIC measure used was de�ned as
N�(N�1)+N�4

2
logK � L, where N is the number of states, K is the dataset size, and

L the log-likelihood of the data.
Both model types were evaluated on the same 100 datasets of each type in order

to fairly determine the distribution of models selected by each. It was observed that
MML was more conservative for small datasets (less than 30 items) with the BIC
criteria often over-�tting (about 10% of the time) for very small datasets (10 items).
However, MML out performs the BIC criteria for the more complex models (more than
4 classes) with moderate numbers of observations (between 100 and 1000). Except
for the problems that the BIC criteria has with small datasets both models rarely if
ever over-�t this data. As the dataset size increases both methods converge to the
correct generating model with the MML model converging more rapidly in the more
complex model spaces.

5.3 Real World Data

The `real-world' dataset selected consists of 41731 pairs of protein dihedral angles
(�, ). Secondary structure classi�cation of such data is of signi�cant interest in the
area of protein modelling. The angle pairs are constructed from approximately 230
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Figure 1: 19 class protein structure model

separate proteins as detailed in Edgoose et al. (1998) and the program was modi�ed
to encode each protein segment independently. The von Mises distribution was used
to model both the � and  angle attributes.

The best Markov classi�cation model found had 19 classes and a message length
of 266973 bits. This 19 class structure is shown in �gure 1 with each class depicted by
an ellipse with centre (��,� ) and dimensions ( 1p

��
, 1p

� 
). The actual observations

are overlaid to create a scatter plot which is a square depiction of the surface of a torus
and hence wraps around the edges. The class model found correlates well with known
biological structures as well as pointing to other statistically signi�cant relationships
some of which are sequence related.

The search procedure for the Markov model space was found to be e�ective and
consistent on this large and complex `real-world' dataset.

6 Conclusion

We have extended the MML un-supervised classi�er Snob to model ordered datasets
where the best classi�cation of an observation need not be independent of the classi-
�cation of neighbouring observations. Speci�cally we model the data as if it had been
generated from a �rst order Markov process with the state at any point specifying
the class of the corresponding observation. Such a model is commonly referred to as
a Hidden Markov Model.

We de�ne a near optimal information measure for the cost of stating such a model
and a set of observations given the stated model. This gives an objective criteria by
which we can judge two competing models which di�er in the numbers of classes
they contain given a speci�c dataset. This measure is used to guide a robust un-
supervised search of the Markov classi�cation model space that correctly balances
model complexity against explanatory power.
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Experimentally it has been shown that the MML information measure for the
Markov classi�cation model yields improved class model selection results when com-
pared with the more commonly used BIC criteria.

The Markov classi�cation model has been used with consistent success on a large
and di�cult `real-world' protein dataset indicating that the un-supervised search
heuristics are e�ective and the model search robust.
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