Compression of Stringswith Approximate Repeats

L. Allison, T. Edgoose, T. I. Dix
School of Computer Science and Software Engineering,
Monash University,
Australia 3168.
http://www.csse.monash.edu.au/~lloyd/tildeStrings/

Appears in Intelligent Systems in Mol. Biol. ISMB98, Montreal, pp8-16, 28 June - 1 July 1998

Abstract

We describe a model for strings of characters that is loosely
based on the Lempel Ziv model with the addition that a re-
peated substring can be an approximate match to the original
substring; this is close to the situation of DNA, for example.
Typically there are many explanations for a given string under
the model, some optimal and many suboptimal. Rather than
commit to one optimal explanation, we sum the probabilities
over all explanations under the model because this gives the
probability of the data under the model. The model has a
small number of parameters and these can be estimated from
the given string by an expectation-maximization (EM) algo-
rithm. Each iteration of the EM algorithm takes O(n?) time
and a few iterations are typically sufficient. O(n?) complex-
ity is impractical for strings of more than a few tens of thou-
sands of characters and a faster approximation algorithm is
also given. The model is further extended to include approx-
imate reverse complementary repeats when analyzing DNA
strings. Tests include the recovery of parameter estimates
from known sources and applications to real DNA strings.

Keywords: pattern discovery, repeats, sequence analysis, hid-
den Markov model, DNA, data compression.

Introduction

We describe a model for strings of characters which is
loosely based on the Lempel Ziv (1976) model that a string
consists of a mixture of “random” characters and repeated
substrings. The new model has the addition that a repeated
substring need not match the original substring exactly but
may match it approximately due to the presence of varia-
tions, e.g. mutations, experimental error and noise. When
modelling DNA sequences, we also allow approximate re-
verse complementary repeats. The model has a small num-
ber of parameters governing the probability of repeats, the
probability distribution of the lengths of repeats and the
probability of differences within repeats. The parameters
can be estimated from a given string by an expectation max-
imization (EM) algorithm (Baum and Eagon 1967) (Baum et
al 1970) (Dempster, Laird, and Rubin 1977). Each iteration

partly supported by the Australian Research Council, ARC
grant A49800558

2Copyright (c) 1998, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

of the EM algorithm takes O(n?) time and a few iterations
are generally sufficient. An approximation algorithm that
runs in near linear time is available for long strings where
O(n?) complexity is too great.

The primary purpose of the work is not to compress
strings, and in particular DNA strings, so as to save com-
puter storage space or to reduce data transmission costs.
Rather, the purpose is to model the statistical properties of
the data as accurately as possible and to find patterns and
structure within them. As such our algorithms do not have
to run as quickly as typical file compression programs al-
though they could act as benchmarks for such programs in
this application area. In fact the final compression step is
not carried out, instead probabilities and the lengths of en-
codings are calculated although actual encodings could be
produced in principle (Wallace and Freeman 1987).

Agarwal and States (1994), Grumbach and Tahi (1994),
and others have recognised the general importance of com-
pression for pattern discovery in biological (and other) se-
guences. One of the benefits of looking at pattern in this
way is a hypothesis test: the claimed discovery of pattern,
structure or repetition is only an “acceptable hypothesis” if
it leads to genuine compression of the data. Using compres-
sion as the criterion for what is variously known as inductive
inference or machine learning dates back at least to the work
of Solomonoff (1964), Kolmogorov (1965), Chaitin (1966)
and Wallace and Boulton (1968). It is widely held that the
crucial part of compression is accurate modelling of the data
and that the degree of compression indicates the accuracy of
the models used. A practical advantage of thinking about
inductive inference in compression terms is that it becomes
obvious that all relevant information, and in particular any
inferred parameters of a model, other than common knowl-
edge, must be included if the encoded data is to be decod-
able, i.e. comprehensible. The large body of standard meth-
ods, algorithms and heuristics from data compression can
also be used. Lastly, the scientific method expects theories
and hypotheses to make testable predictions, and only good
predictions can be used to produce brief encodings.

Interestingly, common file compression programs per-
form poorly on DNA sequences; something more spe-
cialised is needed and any available prior knowledge or
expertise in the biological domain should be brought to
bear. Milosavljevic and Jurka (1993) applied a Lempel Ziv

type model to DNA and Powell et al (1998) examined the
compression available in variations on that work. Wootton
(1997) directed attention to what was termed the “compo-
sitional complexity” of strings, i.e. the multistate distribu-
tion (Boulton and Wallace 1969) of characters in sliding
windows, and stopped short of providing a figure for the
overall information content of a complete string. Loewen-
stern and Yianilos (1997) extended a file compression al-
gorithm to DNA by allowing mismatches to occur in “con-
texts” with considerable improvement over previous meth-
ods; the model has several dozen parameters which are fitted
to the data but do not have direct biological interpretations.
Rivals and Duchet (1997) presented a heuristic which can
join exact repeats that are close together into clusters or runs,
i.e. it can make some allowance for approximate repeats.

In the following sections we recall the Lempel Ziv model,
extend it to allow approximate repeats, and present an in-
ference algorithm and tests on known sources. A faster, ap-
proximate algorithm is described for longer strings.

Exact Repeats

The basic Lempel Ziv model (1976) considers a string to
be made up of a mixture of random characters and repeated
substrings. For example, one possible explanation of the
string AAGTACACGTACAGT under the model is AAGTA-
CAC(3,5)GT where (3,5) indicates a repeat from position
3 of length 5, i.e. GTACA. Random characters are drawn
from an alphabet with some probability distribution, in the
simplest case a uniform distribution. A repeated substring
is a copy of a substring that starts somewhere earlier in the
string. The statistical properties of repeats are the probabil-
ity with which repeats occur, the probability distribution on
starting points and the probability distribution on the lengths
of repeats.

Many variations on the Lempel Ziv model are possible
but simple choices are for a fixed probability of repeats and
a uniform distribution (from 1 to the current position-1) on
starting points. Ziv and Lempel (1977) demonstrate that
their model asymptotically converges, in terms of compres-
sion, to the true model when the data come from some fixed
but unknown source. This implies that theirs is a good model
to use when the true nature of the source is unknown.

To compress a string under the Lempel Ziv model, one
outputs code words describing either a character or a repeat.
Assuming a fixed probability of a repeat, P(start), and a
uniform probability distribution over characters, a random
character has a code word of length —loga(1 — P(start)) +
logs(|alphabet|) bits. Assuming a uniform distribution on
the source of repeats, a repeat into position i has a code word
of length —loga (P(start)) +1logz(i — 1) +loga(P(length))
bits. The usual objective is to find a single optimal explana-
tion for the given string, using this as the basis for com-
pressing it. Finding an optimal explanation is the search
problem. We know that in the related sequence alignment
problem (Allison, Wallace, and Yee 1992), a single optimal
explanation underestimates the probability of the data and
gives biased estimates of parameter values. Therefore we
sum over all explanations under the new model which gives

better compression, particularly for “weak” or “statistical”
structure.

The Lempel Ziv model inspired many file compression
programs. To be practical, such programs must run in lin-
ear time, and in fact linear time with a small constant, so
much of the work in file compression has been on sophis-
ticated algorithms and data structures, such as hash-tables
and suffix-trees, to achieve this end. The current practice in
general text compression is to keep a data structure of “con-
texts” i.e. words of some length k, that have occurred in
the past, with statistics on the frequencies of characters that
followed instances of each context. Major variations cover
whether or not there is a bound on context length (Cleary
and Teahan 1997), and how to balance predictions from long
but rare contexts against those from short but more frequent
contexts.

When typical file compression programs, such as zip, are
run on DNA strings they often fail to compress the DNA be-
low the base-line figure of two bits per character (Loewen-
stern and Yianilos 1997), i.e. they fail to compress the DNA
at all. This is due to a combination of factors: File compres-
sion programs are generally set to deal with an alphabet of
size 256, perhaps with some expectation of the Ascii char-
acter set (about 100). Most DNA seems to have rather little
redundancy, with compression to 1.9 or 1.8 bits per charac-
ter being possible with specialist programs. File compres-
sion programs do gradually adapt to the DNA’s statistics but
have often lost too much ground in doing so to make it up
on sequences such as HUMHBB (73 thousand characters).

Approximate Repeats

The current work uses a new model of strings where a re-
peated substring can be an approximate, rather than an ex-
act, match to the original substring. There are two prior rea-
sons to believe that this could be useful. First, it in effect
increases the number of contexts that match the last char-
acters of the string, at least approximately if not exactly,
and therefore increases the amount of available information
about what could come next. Second, for some data sets and
notably for DNA there are well known processes by which
instances of repeats can differ from each other.

Events in the replication of DNA strings can lead to the
duplication of substrings (repeats) and also duplication from
the complementary strand in the reverse direction (reverse
complementary repeats). These events can create repeats
with lengths of hundreds or thousands of characters. Once
a substring has been duplicated, the individual copies are
subject to the usual evolutionary processes of mutation by
which characters can be changed, inserted and deleted. The
subsequent mutation process is well modelled by variations
on the edit-distance problem which also model spelling er-
rors in text and errors and noise in many other kinds of se-
guence.

Some substrings occur a great many times in DNA. For
example, the Alu sequences (Bains 1986), of length about
300 characters, appear hundreds of thousands of times
in Human DNA with about 87% homology to a consen-
sus Alu string. Some short substrings such as TATA-
boxes, poly-A and (TG)* also appear more often than by

chance. Methods are known (Allison and Yee 1990) (Al-
lison, Wallace, and Yee 1992) for calculating the proba-
bility of two DNA strings, S1 and S2, given the hypoth-
esis that S1 and S2 are related, P(S1&S2|related), for
some simple hidden Markov models of mutation. The
complementary hypothesis is that S1 and S2 are unre-
lated and gives a —log-» probability of about two bits per
character for random strings, P(S1&S2|unrelated) =
P(51).P(52), ie. —log2(P(S1&S2|unrelated)) =
—loga(P(S1)) — log2(P(S2)). If S1 and S2 are sub-
strings of some larger string, and it is assumed that S2 is
an approximate repeat of S1, we get P(S1&S2|related) =
P(51).P(52|S1&related) and the —log, of the last part,
—loga(P(S2|S1&related)), is the cost of encoding the
changes in S1’s approximate copy, S2. This encoding is
compact if S1 and S2 are similar.

An alignment of S1 with S2 gives a way of editing (mu-
tating) S1 into S2. An encoding of these edit operations can
be taken as an upper bound of the —log, probability of S2
given the related S1, e.g.

Alignment:

S1: ACGTAC-T

|1
S2: A- GITCGT

Edit S1 — S2:

copy, delete, copy, copy,
change(T), copy, insert(Q, copy

Typically there are a great many ways of editing S1 into
S2, some optimal and some sub-optimal; these are mutually
exclusive hypotheses and together exhaust all the ways in
which S1 and S2 can be related under the model. If there are
two optimal explanations, adding their probabilities saves
one bit in compression. Each suboptimal explanation has a
lower probability but there are a great many more of them.
For example, if there are two options for a plausible align-
ment early in the data shortly followed by two more options,
these options multiply together to give four options in total -
and this is just the start. Adding the probabilities of all such
editing sequences yields the probability, under the model, of
S2 given S1 and given S2 being related to S1. This calcu-
lation can still be carried out in O(n?) time by a modified
dynamic programming algorithm (DPA) that sums probabil-
ities (Allison, Wallace, and Yee 1992) rather than maximiz-
ing the probability of an alignment (edit sequence) which
is equivalent to minimizing the edit-distance. We therefore
use this alignment algorithm, summing the probabilities of
all alignments of possible repeats, within the string compres-
sion model. The algorithm actually works with the —log5 of
probabilities but it is sometimes convenient to discuss it in
terms of the probabilities directly.

Figure 1 shows a finite state machine for generating
strings under the new model; it is a mathematical abstraction
derived from the considerations above. From the base state,

copy,change,
insert,

copy,
change,
end insert

00>

start R

delete

Figure 1: Simple Generating Model

B, the machine can generate “random” characters, returning
to the base state. It can also start a repeat, moving to state
R. From state R, characters can be copied from the source
substring, but characters can also be changed, inserted or
deleted. The auxiliary states, R2 and R3, are simply there
to ensure that invisible events are prohibited, i.e. at least
one character must be output before returning to B. The
repeat ends with a return to the base state. The base state
is also the start and end state of the machine. Many vari-
ations on the “architecture” of the machine are possible to
incorporate prior knowledge while staying within the gen-
eral framework.

Figure 2 shows the “repeat graph” for a string beginning
ACA... under the new model; note that the graph is acyclic.
A node represents a machine state at a particular time. The
graph amounts to an unfolding of all possible sequences of
state transitions of the machine described above (figure 1),
except that state R3 is merged into R2 for simplicity.

A path through the graph from the start node, By, to the
end node, B, is an “explanation” of the string. The paths
form an exclusive and exhaustive set of explanations under
the model. Some explanations are plausible and some are
quite implausible, but all of their probabilities are summed
by the DPA. The left-hand column of the repeat graph con-
tains state-transitions of the base state that generate “ran-
dom” characters. A repeat may start from any point in
this column. Once within a repeat, the repeat may end or
continue. If the repeat continues, a character is copied or
changed (diagonal move), deleted (horizontal move) or in-
serted (vertical move). The repeat’s origin must be encoded
when it starts. A new character must be encoded with each

A C
--Row 1
c change(C)
% ®
d
o < / -- Row 2
R
change(A)
A copy
ins(A)
R2 del R2 R2,
. y e e - Row 3
3 N N
%} (R)

Figure 2: Repeat Graph

insert or change but this is not necessary for a copy or delete.
The length of a repeat is effectively encoded in a unary code,
by repeatedly stating that the repeat has not yet ended. A
unary code corresponds to a geometric probability distribu-
tion. It is not claimed that a geometric distribution is an
optimal fit to the distribution of repeat lengths; it is used be-
cause it has the property of making the DPA’s incremental
calculations “local” which permits the summing of all ex-
planation probabilities in O(n?) time. This is discussed in a
later section.

Reverse complementary repeats were left out of the dis-
cussion above but are included in the model by a further set
of states R’, R2' and R3' in the machine, and nodes and
arcs in the repeat graph, similar to those for forward repeats
in figure 1 and figure 2. There is a corresponding set of prob-
ability parameters for the start, continuation and mutation of
reverse complementary repeats.

The various probability parameters can be given apriori
if they are known. Alternately they can be (re)estimated in
an expectation maximization (EM) process: Each node in
the repeat graph (figure 2) contains the average frequencies
of transition types over all paths leading to the node from
the start node. When two paths meet, a weighted average
of their counts is formed, weighted by the paths’ relative
probabilities. The frequencies in the end-node are used to
derive new probability estimates for the next EM iteration.
The EM process is guaranteed to converge because the new
parameter values must be as good or better than the old val-

ues for the current path weightings and, similarly, the next
set of path weightings will be as good or better than the old
ones for the new parameter values. Convergence to a local
optimum is possible in principle but this is not a problem
in practice. The process terminates when the overall proba-
bility increase for an iteration is less than some small limit.
A few iterations are sufficient if the initial values are “sen-
sible”. The statement of the parameter values, to optimum
accuracy, must be included in the final —log probability cal-
culations for the string if one is to legitimately compare sim-
ple and complex models; this is done using the calculations
of Boulton and Wallace (1969) for multistate distributions.

A further improvement is to use a first-order Markov
model in place of the random-character (uniform, zero-order
Markov model) part of the model for the base-state transi-
tions as this is found to give an improvement of 0.03 bits
per character on HUMHBB, for example. In addition, char-
acters involved in changes are assumed to come from the
underlying probability distribution for the alphabet renor-
malised after the removal of the character being changed.

There are clearly O(n?) nodes in the repeat graph but the
algorithm only needs to keep two rows, the previous row
and the current row, to operate in O(n) space. The algorithm
takes O(n?) time per EM step.

estimated P(start) (P(copy)=0.9,P(end)=0.02 size=500)

Figure 3: Recovery of the P(start) model parameter from a
known source

Reestimation Tests

Importantly, the algorithm fails to compress truly random,
artificial DNA strings. The inferred value of P(start) is
close to zero for such data but nevertheless the string re-
quires more than two bits per character and the hypothesis
that it contains any pattern or structure fails the significance
test.

The ability of the algorithm to recover the parameter val-
ues of a known source was tested: A program was written
to generate random strings according to the new model with
specified parameter values. One parameter was varied sys-
tematically while the others were held constant. For each
parameter setting, 100 strings of length 500 were generated.
For example, figure 3 shows a plot of the genuine versus
estimated values of P(start) for repeats. Although the gen-
erating parameters were varied systematically there is natu-
rally variation in transition frequencies in particular strings,
as indicated by the gap between the 10% and 90% percentile
estimates. The median shows good recovery of the generat-
ing value, for repeats with P(start) in the range tested, be-
tween 0.02 and 0.1. For real DNA strings P(start) is likely
to be under 0.1. Similar tests show good recovery of the
other parameters of the model.

A Fast Approximation

The O(n?) algorithm previously described takes thirty min-
utes per iteration on a Silicon Graphics “Indy” work-station
for Dromaster (six thousand characters) and two days per
iteration for human globin region HUMHBB (73 thousand
characters). A faster approximation algorithm is available if
greater speed is necessary. This operates by summing the
probabilities for only those explanations in the most “im-
portant” areas of the repeat graph (figure 2) to give an upper
bound on the string’s true —log- probability.

The idea is to find (most) good explanations and only run
the DPA in regions close (+£5 nodes) to a good explanation.
A hash-table is used to record all instances of each k-tuple

Model Accuracy and Speed Comparison

s 3
53

bits/obs.

Figure 4: Comparison of model accuracy and speed
Sequence Length Bio- CDNA- | New-
compress2 | compress | model
Dromaster 6.3K - - 1.853*
HUMHBB 73K 1.88 1.77 1.728
CHNTXX 155K 1.62 1.65 1.614
Yeast chr3 315K 1.92 1.94 1.913

Biocompress2 and CDNAcompress figures
from (Loewenstern and Yianilos 1997)
* Full O(n?) algorithm

Table 1: Compression of DNA Sequences (bits/nucleotide)

in the string where k is a constant, typically in the range 6
to 14. Most significant repeats are likely to contain exact
matches of length k, from time to time. A region is “turned
on” at a k-tuple match. A region is left turned on so long
as any of its nodes is contributing a not insignificant amount
to the probability of the string, currently assessed as having
a —logo probability of no more than that of the base-state
minus the repeat start-up cost plus 4 bits. A region can grow
or shrink and eventually be turned off depending on the con-
tributions within it. This approximation gives a trade-off be-
tween accuracy and speed. Making the regions wider, the
value of k smaller, and the threshold on probability contri-
butions more lenient all increase accuracy at the price of
speed. Figure 4 plots the relationship between calculated
—log, probability and running-time for the approximation
algorithm as k is varied, the string being 6000 characters
from position 23,000 of HUMHBB which contains one sig-
nificant repeat. It is quite possible that continued tinkering
with this or different heuristics may lead to a better trade-off
between accuracy and speed.

DNA

The approximation algorithm and, where practical, the ex-
act algorithm were run on real DNA strings. Dromaster is a
gene, from drosophila melanogaster, for a repetitive protein
so the cDNA is also quite repetitive. At 6.3K, the O(n?) al-

gorithm can comfortably be run on it. HUMHBB is the hu-
man globin region and contains multiple globin genes. To-
bacco chloroplast, CHNTXX, is notable for a 25K reverse
complementary repeat. Yeast chromosome 111 was included
as a long string, 315K nucleotides.

Table 1 gives the coding figures for biocompress2 (Grum-
bach and Taji 1994) and CDNA-compress (Loewenstern and
Yianilos 1997), the first two columns coming from the lat-
ter paper, compared with the new string model. The figures
for HUMHBB, CHNTXX and Yeast chrlll are from the ap-
proximate algorithm set to run in realistic times and are thus
upper-bounds on the true entropies under the model.

Figure 5 shows the code length per character as a moving
average over 100 positions for HUMHBB. For example, the
drop around position 40, 000 corresponds to a strong repeat
from the gamma-globin genes, hbgg and hbga.

Examining the inferred probability parameters tells us
something general about a string. Dromaster has nu-
merous forward repeats (P(start) = 0.015) that are
short (P(end) = 0.06) and similar (P(copy) = 0.94).
It has no reverse complementary repeats (P(start) =
0.0001). CHNTXX has a few reverse complementary re-
peats (P(start) = 0.00005) that are long (P(end) =
0.0002) and high-fidelity (P(copy) = 0.9999); i.e. itis
dominated by the 25K example.

Variations

The length of a repeat in the new model is effectively en-
coded by a unary code which corresponds to a geometric
probability distribution, as mentioned previously. Ignoring
the question of substring differences, the code word for a
repeat of a given length > 0 requires —logs(P(start)) +
loga(length — 1)) — (length — 1).logs(P(continue)) —
log2(P(end)) bits. This is a linear function with a slope
of —loga(P(continue)). It is not claimed that a geometric
distribution is the perfect model for the lengths of repeats,
indeed that is most unlikely, but it does make the DPA’s cal-
culations in the repeat graph “local” because the incremen-
tal cost of extending all repeats is the same. This allows
an O(n?) DPA to sum the probabilities of all paths through
the graph (figure 2). A mixture of two (or more) geometric
distributions has the same property although at the price of
roughly doubling (etc.) the number of states in the graph.
In passing, note that it would be possible to change to arbi-
trary probability distributions having concave negative logs
by adapting the technique of Miller and Myers (1988), pro-
vided that one wanted only a single optimal explanation of
the string. The resulting algorithm would have O(n?) com-
plexity when a certain equation is solvable in O(1) time, and
O(n?log(n)) complexity otherwise.

A model with a mixture of two types of forward repeats
and two types of reverse complementary repeats was run on
HUMHBB: It marginally reduced the entropy from 1.728
to 1.725 bits/character, covering the cost of stating the ex-
tra sets of parameters so this is not a case of over-fitting.
The parameter estimates describe mixtures of repeats: Low
fidelity (P(copy) = 0.78) forward repeats occur most of-
ten (P(start) = 0.0006). High fidelity (P(copy) = 0.96)
forward repeats occur less often and are shortest on average

(P(end) = 0.006). Low fidelity (P(copy) = 0.70) reverse
complementary repeats occur rarely (P(start) = 0.0002).
Medium fidelity (P(copy) = 0.86) reverse complementary
repeats occur rarely but are longest on average (P(end) =
0.003). Over all types of repeat, changes are about ten times
more probable than inserts or deletes.

In a similar vein to the repeat-length distribution, the
present algorithms use the simplest possible model of point-
mutations on repeated substrings. As above, this effec-
tively codes the length of a run of inserts or deletes with
a unary code. This is not unreasonable because inserts and
deletes do seem to occur at fairly low rates in repeats. How-
ever, one could use linear gap-costs (Gotoh 1982), and even
piecewise-linear gap-costs, while still summing over all ex-
planations as described for aligning two strings (Allison,
Wallace, and Yee 1992). That technique could be used in
the current string model at the cost of increasing the number
of states in the repeat graph, leaving the exact algorithm’s
complexity at O(n?) but with a larger constant.

Note that the new model and its algorithms have an as-
sociation with Tichy’s (1984) block-moves model of string
comparison. The latter involves a “source” string and a “tar-
get” string, that is to say it is not symmetrical with respect to
Sland S2. A substring, i.e. a block, can be copied from the
source string and appended to the target string as the latter
is being built up; in fact this is the only way in which the
target can grow. Tichy’s objective was to find the explana-
tion of the target string that requires the smallest number of
these block-moves. This would be a most probable expla-
nation provided that all block-moves were equally probable.
The copies are exact and there is a linear-time algorithm for
the problem. In a parallel, our new string model could be
used to compare two strings S1 and S2 under “approximate
block-moves”: append S1 and S2, now compress the result
under the new model but only allowing repeats from S1 into
S2. In fact it would make sense also to allow repeats from
Slinto S1and from S2 into S2. We speculate that this might
be another useful way to look for relationships between bio-
logical sequences.

Conclusions

The new model of strings allows approximate repeated sub-
strings; a repeated substring need not be an exact match to
the original but may contain changes, insertions and dele-
tions. This allows more (approximate) contexts from the
past to play a part in predicting the next character. It also
directly models, to some extent, actual events in the repli-
cation of DNA. Consequently the method’s parameter esti-
mates can be directly related to these events. Tests on known
artificial sources show good estimation of parameter values.
There is a natural significance test for any structure, pattern
or repetition claimed to have been found.

A dynamic programming algorithm calculates the proba-
bility of a string under the model in O(n?) time when the
probability parameters governing repeats are given in ad-
vance. The algorithm can be used as the step in an expec-
tation maximization algorithm to estimate the parameters, if
they are not known in advance, and a few iterations are usu-
ally sufficient. A faster approximation algorithm is available

DNA compression plot
22 T T T

ty o

bits/obs

0.6 -

0.4

0.2

V

T T
average comprefsion

I L
40000 50000

symbol

L L L
0 10000 20000 30000

L
60000

L
70000

80000

Figure 5: Compression plot for HUMHBB

when greater speed is necessary. The algorithms give good
compression of real DNA sequences indicating that the pat-
terns found are significant.

A two-dimensional plot, figure 6, using intensity to show
the level of contributions to the string’s probability gives a
useful visualization of the identities and significance of re-
peated substrings, here for HUMHBB. The inset magnifies
the structure of the reverse complementary repeats near the
end of this string. Such plots resemble familiar dot-matrix
plots but with a formal connection between significance and
grey-scale level.

References

Agarwal, P.; and States, D. J. 1994. The repeat pattern
toolkit (RPT): analyzing the structure and evolution of the
C. elegans genome. In Proc. 2nd Conf. on Intelligent
Systems in Molec. Biol., 1-9.

Allison, L.; Wallace, C. S.; and Yee, C. N. 1992. Finite-
state models in the alignment of macro-molecules. J.
Molec. Evol. 35(1) 77-89.

Allison, L.; and Yee, C. N. 1990. Minimum message length
encoding and the comparison of macromolecules. Bull.
Math. Biol. 52(3) 431-453.

Bains, W. 1986. The multiple origins of the human Alu
sequences. J. Molec. Evol. 23 189-199.

Baum, L. E.; and Eagon, J. E. 1967. An inequality with ap-
plications to statistical estimation for probabilistic func-

tions of Markov processes and to a model of ecology. Bul-
letin AMS 73 360-363.

Baum, L. E.; Petrie, T.; Soules, G.; and Weiss, N. 1970. A
maximization technique occurring in the statistical anal-
ysis of probabilistic functions of Markov chains. Annals
Math. Stat. 41 164-171.

Boulton, D. M.; and Wallace, C. S. 1969. The information
content of a multistate distribution. J. Theor. Biol. 23
269-278.

Chaitin, G. J. 1966. On the length of programs for comput-
ing finite binary sequences. J. Assoc. Comp. Mach. 13(4)
547-569.

Cleary, J.; and Teahan, W. J. 1997. Unbounded length con-
texts for PPM. Comp. Jrnl. 40(2/3) 67-75.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. J. Royal Sat. Soc. B 39 1-38.

Gotoh, O. 1982. An improved algorithm for matching bio-
logical sequences. J. Molec. Biol. 162 705-708.

Grumbach, S.; and Tahi, F. 1994. A new challenge for
compression algorithms: genetic sequences. Inf. Proc.
and Management 30(6) 875-886.

Kolmogorov, A. N. 1965. Three approaches to the quanti-
tative definition of information. Probl. Inf. Transmission
1(1) 1-7.

Lempel, A.; and Ziv, J. 1976. On the complexity of finite

Figure 6: Repeat plot for HUMHBB

sequences. |EEE Trans. Inf. Theory IT-22 783-795.

Loewenstern, D. M.; and Yianilos, P. N. 1997. Sig-
nificantly lower entropy estimates for natural DNA se-
quences. In IEEE Data Compression Conf., DCC97, 151-
160.

Miller, W.; and Myers, E. W. 1988. Sequence compari-
son with concave weighting functions. Bull. Math. Biol.
50(2) 97-120.

Milosavljevic, A.; and Jurka, J 1993. Discovering simple
DNA sequences by the algorithmic significance method.
Comp. Appl. BioSci. 9(4) 407-411.

Powell, D. R.; Dowe, D. L.; Allison, L.; and Dix, T. I. 1998.
Discovering simple DNA sequences by compression. In
Pacific Symp. Biocomputing, Hawaii, 597-608.

Rivals, E.; and Dauchet, M. 1997. Fast discerning repeats
in DNA sequences with a compression algorithm. In Proc.
Genome Informatics Workshop, Tokyo, 215-226.

Solomonoff, R. 1964. A formal theory of inductive infer-
ence, | and II. Inf. Control 7 1-22 and 224-254.

Tichy, W. F. 1984. The string-to-string correction problem
with block moves. ACM Trans. Comp. Sys. 2(4) 309-
321.

Wallace, C. S.; and Boulton D. M. 1968. An information
measure for classification. Computer J. 11(2) 185-194.
Wallace, C. S.; and Freeman, P. R. 1987. Estimation and
inference by compact coding. J. Royal Stat. Soc. series

B. 49(3) 240-265.

Wootton, J. C. 1997. Simple sequences of protein and
DNA. In DNA and Protein Sequence Analysis, a Practical
Approach, 169-183. Eds M. J. Bishop and C. J. Rawlings,
IRL Press.

Ziv, J.; and Lempel, A. 1977. A universal algorithm for
sequential data compression. |EEE Trans. Inf. Theory
IT-23 337-343.

This paper, “Compression of Strings with Approximate Re-
peats”, was presented at “Intelligent Systems in Molecu-
lar Biology”, ISMB98, Montreal, pp8-16, 28 June — 1
July 1998.

Added later, also see:

Allison, L; Powell, D.; and Dix, T. I. 1999. Compression
and Approximate Matching. Computer J., Oxford Uni-
versity Press, 42(1), pp1-10, 1999. (how to add models
of sequences into alignment algorithms so as to correct for
false-positive matches and false-negatives when aligning
low- or medium- information content sequences.)

Allison, L.; Stern, L.; Edgoose, T.; and Dix, T. I. 2000.
Sequence Complexity for Biological Sequence Analysis.
Computers and Chemistry, 24(1), pp43-44, Jan’ 2000.

Stern, L; Allison, L.; Coppel, R. L.; and Dix, T. I. 2001.
Discovering Patterns in Plasmodium falciparum Genomic
DNA. Molecular and Biochemical Parasitology 118(2)
ppl75-186, Dec’ 2001.

