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General purpose un-supervised classi®cation programs have typically assumed independence

between observations in the data they analyse. In this paper we report on an extension to the
MML classi®er Snob which enables the program to take advantage of some of the extra
information implicit in ordered datasets (such as time-series). Speci®cally the data is modelled

as if it were generated from a ®rst order Markov process with as many states as there are
classes of observation. The state of such a process at any point in the sequence determines the
class from which the corresponding observation is generated. Such a model is commonly
referred to as a Hidden Markov Model. The MML calculation for the expected length of a

near optimal two-part message stating a speci®c model of this type and a dataset given this
model is presented. Such an estimate enables us to fairly compare models which di�er in the
number of classes they specify which in turn can guide a robust un-supervised search of the

model space. The new program, tSnob, is tested against both `synthetic' data and a large `real
world' dataset and is found to make unbiased estimates of model parameters and to conduct
an e�ective search of the extended model space.
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1. Introduction

Classi®cation, also known as mixture modelling and clus-
tering, is the building of models from sets of observations
where each observation is assumed to have been generated
from one of a ®nite number of classes. A particular clas-
si®cation model speci®es the number of such classes and a
distribution over the observations expected for each.
Un-supervised classi®cation programs attempt to ®nd the
most appropriate class structure and parameterisation
given a set of observations.

However, selecting the most appropriate number of
classes requires that a balance to be struck between model
complexity and explanatory power. The best model will be
su�ciently complex as to avoid discarding information
implicit in the observed data, but not so complex as to be
overly speci®c to the observed data (over ®tting). A partial
solution to this problem was presented in earlier un-su-
pervised classi®cation work by Wallace and Boulton (1968)
and subsequently generalised by Wallace (1987, 1990). A
Minimum Message Length (MML) information measure
was proposed that would estimate the length of an optimal

two-part message stating a model and a set of observations
given the model stated. Such a message length gives an
information measure by which any two competing classi-
®cation models can be fairly compared.

This earlier MML classi®cation work was designed
to model randomly sampled data and hence assumed
independence between observations in a dataset. This
assumption fails to take advantage of some of the extra
information implicit in datasets where the observations are
not randomly sampled such as sequences.

In this paper we present an MML based approach to the
un-supervised classi®cation of a sequence of observations
which takes advantage of some of the extra information
contained in such data. Speci®cally the data is modelled as
if it were generated from a ®rst order Markov process with
as many states as there are classes of observation. The state
of such a process at any point in the sequence determines
the class from which the corresponding observation is
generated. Such a model is commonly referred to as a
Hidden Markov Model (HMM) and is able to capture the
sequential structure of datasets where the probability of an
observation in a certain class depends only on the class of
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the immediately preceding observation (i.e. ®rst order).
Such a model has only one probabilistic state variable (with
as many possible states as there are classes) that in¯uences
the assignment of the next observation and which is then
updated and propagated along the Markov chain. For
sequences with a more complicated sequential structure
(perhaps a simple grammar) the best ®rst order approxi-
mation will be found. Although not appropriate for all
types of sequential data, this sequence model is none the
less of signi®cant practical interest. For a good introduc-
tion to these models which are rich in mathematical
structure and have been used extensively in the area of
speech recognition refer Rabiner (1989). An iterative
solution for these models was ®rst proposed by Baum et al.
(1970). The technique applied was an Expectation Max-
imisation (EM) method later generalized by Dempster and
Rubin (1977). Later work by Leroux and Puterman (1992)
improved on the work by Baum by using a Bayesian
Information Criteria (BIC) to estimate the complexity of a
given HMM model and hence they were able to compare
two HMMs with a di�erent number of states. However,
these works su�ered from the lack of a suitable search
method for larger model spaces and also from the sur-
prising notion that there can ever be enough observational
evidence to justify a probability of zero (or one) when
estimating model parameters. This in turn led to zeros
being preserved in the transition matrix and the possibility
of a search being trapped in such a solution. We extend this
earlier work by deriving an MML information estimate for
such a model, an improvement on the approximate BIC
estimate, and we specify an e�ective search method of this
complex model space which is guided by this measure.

The MML classi®cation program Snob of Wallace (1990)
has been re-implemented and extended in order to model
®rst order Markov processes. The new program, tSnob, is a
cut-down variant of the MML classi®er written in the C
programming language. It includes most of the existing
functionality of the 1993 Snob implementation with the
exception of poison distributed attributes. The program is
designed to model multi-variate data with a ®xed number of
attributes. The type of these attributes can be discrete,
continuous or angular these being modelled by multi-state,
Gaussian or von Mises distributions respectively. Attribute
values are assumed to be independently distributed within a
class and for any particular observation in a dataset any or
all attribute values may be tagged as missing.

The MML modelling approach is Bayesian in nature and
strong parallels exist between Snob and the Bayesian
classi®er Autoclass produced by Cheeseman (1988). The
methods are contrasted in Wallace (1990). MML contrasts
with the Minimum Description Length (MDL) informa-
tion measure subsequently proposed by Rissanen (1987) in
that MML states a speci®c model parameterisation and the
encoding is based on domain speci®c prior knowledge
rather than a universal prior.

This paper includes a short introduction to MML en-
coding, the construction of a MML code for this class of
Markov classi®cation model, a speci®c model space search
procedure and some experimental results based on `syn-
thetic' and `real-world' data. The MML information
measure of the Markov classi®cation model yields im-
proved class model selection results when modelling se-
quential datasets even where there is only a modest
dependence between adjacent observations. Such a mea-
sure also results in unbiased parameter predictions and can
guide a search of the model space thus making a di�cult
search problem more tractable.

2. MML background

Within the MML paradigm, models are judged by their
ability to reduce the length of a message transmitting all
our observations to a receiver who initially shares only our
prior beliefs. We calculate the expected length of an opti-
mal message sending a model (i.e. an hypothesis) to an
optimal precision and our observations given this model
(i.e. the evidence). The best model will minimise the length
of this two-part message. No model that fails to compress
the evidence can be considered superior to the empty model
(null hypothesis).

These two message parts are used as estimates for P �H�
and P �D jH� in Bayes Theorem.

P�H jD� � P �H� � P �D jH�
P �D�

For any one particular dataset P �D� is constant, so the best
hypothesis will maximise

P�H & D� � P �H� � P �D jH�
This gives an fair criterion which we can use to compare
any two hypotheses based on a given set of observations.

Wallace and Freeman (1987) gives the general form of
such an MML estimate (given an appropriate likelihood
function and a stable prior)

ML�H & D� � ÿ ln h�H� � 1
2 ln det�F �H��

ÿ ln f �D jH� � g�np�
where h�H� is a prior distribution over parameter values,
F �H� is the Fisher Information matrix, f �D jH� is the like-
lihood function for the model, g�np� is a function of the
number of parameters being estimated, and the unit of the
result is natural bits or nits (divide by ln 2 to convert to bits).

The objective function for Snob is constructed using
three such MML optimal code length estimates. The esti-
mates we use are the same as those in the original Snob
program. They predate the derivation of the general form,
but are close approximations.

The ®rst of these is the multi-state distribution where
observed values are discrete and have come from a ®nite
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unordered set of possibilities. From Wallace and Boulton
(1968) the optimal MML code length to transmit K values
from an M state multi-state distribution (assuming a uni-
form prior over the possible combinations for the fre-
quencies of the observed values) is:

ML�H & D� � M ÿ 1

2
ln

K
12
� 1

� �
ÿ ln�M ÿ 1�!

ÿ
XM
m�1
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where n�m� is the number of values in state m and p�m� is the
probability stated for state m and is re-estimated as

p�m� � n�m� � 1
2

K � M
2

The second is the Normal distribution where values are
continuous reals stated to a speci®ed accuracy. From
Wallace and Boulton (1968) the optimal MML code length
to transmit K values from a normal distribution with mean,
l, standard deviation, r, andmeasurement accuracy, e, from
a global distribution with mean, lp, and standard deviation,
rp, (assuming l has a uniform prior in the range lp � 2rp
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and r is re-estimated as
�������

v
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p
where v is the sample vari-

ance.
Finally, we consider the von Mises distribution detailed

in Fisher (1993) for modelling angular values stated to a
known accuracy. It has mean direction l and concentration
parameter j. Letting I0�j� be the relevant normalisation
constant, it has probability density function

f �x j l; j� � 1

2pI0�j� e
j: cos�xÿl�

which for small j tends to a uniform distribution and for
large j tend toward a Normal distribution with variance
1=j. This is a circular analogue of the Normal distribution
± both being maximum entropy distributions. The MML
estimate for the von Mises distribution is less compact and
can be found in Wallace and Dowe (1993).

These three expected message length functions will be
minimised when the model parameters stated best ®t the
data to be encoded.

3. Calculating the message length of model and data

In this section we de®ne the calculation for the length of a
near optimal message encoding a speci®c parameterisation

of our Markov classi®cation model (stated to an appro-
priate accuracy) and a sequence of observations given this
model. We derive the length of such a message by ®rst
stating the length of a non-optimal encoding and then
deriving the length of the optimal encoding by argument.

Our encoding consists of the following components:

(a) The number of classes (N )
(b) The relative abundance of each class
(c) For each class

� The distribution parameters for each signi®cant
attribute

� The relative abundance for the next class condi-
tional upon being preceded by this class.

(d) For each observation

� An assigned class
� The attribute values given this class

Parts (a), (b) and (c) constitute our hypothesis, H , and part
(d) is one possible encoding of our data, D, given this
hypothesis.

In part (a) of our message all values for the number of
classes, N , are considered equally likely so stating N is
assumed to have some unknown constant cost. As this
calculation is only used to compare models we can safely
omit this as part of our message length.

The length of part (b) of our message is the cost of
sending the description of a multi-state distribution which
could be used to assign each observation (K in all) to a
particular class (N possibilities).

The code length required to describe a class, ci, can be
closely approximated as the sum of the optimal code
lengths required to state the parameters describing each
attribute. The message length of part (c) of our message is
the sum of these individual class message lengths and ad-
ditionally another N multi-state distributions specifying the
class distribution for the next observation given the class of
this observation. Each of these additional multi-state dis-
tributions encodes a proportion of the total number of
observations as speci®ed by the class relative frequency
stated in part (b).

One caveat of note in this current implementation of
tSnob is that this calculation is a conservative encoding of
the N 2 transition matrix (the optimal message is slightly
shorter). An optimal encoding of this transition matrix is
not known to the authors. However, one should be able to
save something like one row of the matrix. Speci®cally our
estimate is calculated assuming independence between rows
in the transition matrix. This is clearly not the case (there
are fewer degrees of freedom), however, assuming inde-
pendence yields a close approximation that has slight bias
toward a more conservative model.

Once parts (a), (b) and (c) which constitute our
hypothesis, H , have been transmitted we can transmit part
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(d), the actual observations we have, by selecting a class for
each observation and encoding each observation accord-
ingly. An observation is coded as the sum of the optimal
encoding for each attribute value using the stated class with
missing attribute values coding as zero length messages (i.e.
the receiver is assumed to know a-priori which attributes are
missing).

The class of the ®rst observation is speci®ed using the un-
conditional multi-state distribution stated in part (b) of the
message and the class of each successive observation is
speci®ed using the appropriate conditional multi-state dis-
tribution as stated in part (c) of themessage (i.e. based on the
class of the preceding observation). In this way it is possible
to calculate the length of one possible decodable message.

As the only messages we consider are pre®x codes (i.e.
uniquely decodable) we can, for notational convenience,
de®ne a mapping from message lengths to probabilities

Pml�x� � eÿML�x�

where Pml�x� is the probability that we will send a message,
x, of length ML�x� (in nits).

We can consider any one assignment of observations to
classes as a path through our data (see Figure 1) and note
that with N classes and K observations there are NK such
paths. A message stating one such speci®c path will not be
an optimal encoding of the data given the model. However,
we can now calculate the probability (and hence the length)
of the optimal message by summing over all of these NK

sub-optimal encodings.
Summing these NK probabilities appears to be a formi-

dable task. However, if we consider our encoding process
as a state machine, we ®nd that our model is left in only
one of N possible states after the encoding of any obser-
vation. So for any observation, we can calculate the sum
over all paths that lead to one of our N states based on the
N sums calculated for the preceding observation.

We de®ne Pml�ci j cj� to be the probability associated with
a message stating that an observation from ci follows an
observation from cj and Pml�ok j ci� to be the probability
associated with a message stating the attribute values as-
sociated with observation k using class i.

If we now de®ne F �ok 2 ci� to be the sum over all paths
(messages) that lead to an encoding of ok as a member of
class ci then

F �o1 2 ci� � Pml�ci� � Pml�o1 j ci�

F �ok 2 ci� �
XN

j�1
F �okÿ1 2 cj� � Pml�ci j cj� � Pml�ok j ci�

for 1 < k � K and ®nally

P �D jH� �
XN

i�1
F �oK 2 ci�

which is the sum over all the possible encodings of our data
given our model.

The message length of parts (a), (b) and (c) give us P �H�,
and we can calculate P�D jH� so we now have P �H & D�.
This is the objective function that the tSnob program
maximises by minimising it as a message length.

It is important to note that the class transition matrix is
part of our hypothesis and thus will be penalised on in-
formation-theoretic grounds for it's complexity. The best
class structure found using the Markov modelling may well
di�er markedly from the best class structure without the
Markov modelling (in the number of classes and the spe-
ci®c class parameters). Thus a model obtained using this
program will, most likely, be quite di�erent from a model
obtained by ®rst doing a classi®cation that assumes inde-
pendence between observations and then observing the
class transitions (i.e. partitioning the problem space into
two independent sub-problems).

4. Searching the model space

In this section we de®ne the un-supervised search of the
®rst order Markov classi®cation model space implemented
in the tSnob program. The complexity of this ®rst order
Markov classi®cation model space increases dramatically
with the number of classes as does the probability of
®nding locally optimal solutions.

Our search of this model space attempts to avoid these
local optima by limiting the complexity of our model (the
number of classes) at any one time to that justi®ed by our
MML information measure. To this end we divide the
search into two subproblems. Searching for the best pa-
rameterisation of a model with N classes, and ®nding the
best value for N .

4.1. Improving the parameter estimates

We improve the model parameterisation given a particular
class structure by the repeated application of an EM
re-estimation step. In order to apply the EM algorithm on
this problem it is necessary to consider the optimal
assignment of each observation to the N classes indepen-
dently of the assignment of any of the other observations in
the sequence. In fact we wish to calculate the sum over allFig. 1. Possible observation encodings given 2 classes
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the N Kÿ1 possible encodings of our dataset that specify any
one of the N states for any particular observation.

To achieve this we de®ne a backward sum over all pos-
sible paths that lead from a classi®cation of ci for obser-
vation ok to the end of the data sequence.

B�oK 2 ci� � 1

B�ok 2 ci� �
XN

j�1
Pml�cj j ci� � Pml�ok�1 j cj� � B�ok�1 2 cj�

for 0 < k < K. We can now de®ne the contribution of the
class ci for observation ok to the ®nal P�D jH� to be

P �D jH ; ok 2 ci� � F �ok 2 ci� � B�ok 2 ci�
and note that

P �D jH� �
XN

i�1
P �D jH ; ok 2 ci�

for 0 < k � K.
Once we have calculated these N sums for any particular

observation we can calculate the relative contribution of
each of the N states to the encoding of the entire sequence,
P �D jH�. With this information we can correctly re-esti-
mate all the class distribution and transition parameters.
This calculation di�ers from the usual forward-backward
maximum log likelihood calculation in that the appropriate
MML message lengths used may also include small penalty
terms which depend on the accuracy to which the corre-
sponding distribution was speci®ed in the hypothesis.

4.2. Selecting the best number of classes

In order to select the best number of classes we employ a
variation on the class splitting and merging search proce-
dure implemented in the original snob program described
in Wallace (1990). At any one time we consider a speci®c N
class model and we move toward the best solution in this
model space. However, it turns out that by calculating this
we can also easily search a useful subset of the N � 1 and
N ÿ 1 class models. If a model in either subset turns out to
be more likely than our current N class model then we
switch our focus, N , to the better model space. In this way
a simple model will shift to the more complex hypothesis
spaces only when this is justi®ed by the MML objective
function. Having an accurate information measure to guide
this shift in focus is essential to get good initial parameter
estimates in the more complex model spaces and thus avoid
the worst of the locally optimal solutions.

We consider one N � 1 class model and one N ÿ 1 class
model at any one time. These models are constructed from
the current N class model and given a limited number of
improvement cycles in which to yield a better solution
than the N class model. If a better solution is not soon
found then alternative N ÿ 1 and N � 1 models are
constructed. The selection of candidate models in these

other model spaces is guided by message length estimates
based on the current N class model. These estimates give a
upper bound on the true message length in the alternate
model spaces.

We calculate N estimates in the N � 1 model space.
These being where any of the current N classes is split to
form two new classes while all the other N ÿ 1 classes are
kept the same. This is achieved by maintaining a hidden
two class split model for each of the N classes. These split
models are initialised by a random assignment of the
observations from the corresponding model class and then
re-estimated on each pass of the dataset. To speed up this
re-estimation process the observations are assigned to one
or the other split class for the ®rst three cycles and there-
after they are assigned probabilistically by EM. The split
models are also periodically re-initialised in order to search
for di�erent asymmetries in the data. These N hidden two
class mixture models are used to guide the selection and
initialisation of candidate N � 1 class models.

We calculate NC2 estimates in the N ÿ 1 class model
space. These being where any two classes are combined
into one class while all the other classes remain unchanged.
These estimates can be derived by adding the observation
statistics for candidate merge classes and then calculating
the revised expected message length of the new class.

This class splitting and merging search di�ers from that
of the original Snob program in that the message length
estimates are only used to select candidate split or merge
models. The complete model message length evaluation is
still required before such a model is selected as the new
focus for the search.

When we split or merge classes to generate a new
model, care must be taken that the starting values for the
class transition probabilities are reasonable. We ®rst
consider the case where class, ci, is split to form two new
classes, c0i and c00i with the weight given to each class de-
®ned by a probability, w (0 < w < 1), which is typically
0:5. The relative abundances of these two new classes are
de®ned as

P �c0i� � P �ci� � w

P �c00i � � P �ci� � �1ÿ w�
The conditional probabilities independent of ci remain
unchanged. The new conditional probabilities required are
de®ned as

P �c0i j cj� � P �ci j cj� � w

P �c00i j cj� � P �ci j cj� � �1ÿ w�
P �cj j c0i� � P �cj j c00i � � P�cj j ci�
P �c0i j c0i� � P �c0i j c00i � � P �ci j ci� � w

P �c00i j c0i� � P �c00i j c00i � � P �ci j ci� � �1ÿ w�
where j 6� i. This is the starting point for our search in the
N � 1 model space.
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We now consider the case where classes, ci and cj, are
merged to form a new class cij. The initial relative abun-
dance of this new class is de®ned as

P �cij� � P �ci� � P �cj�
The conditional probabilities independent of cij remain
unchanged and the new conditional probabilities are
de®ned as

P�cij j ck� � P �ci j ck� � P �cj j ck�

P�ck j cij� � P �ci� � P �ck j ci� � P �cj� � P �ck j cj�
P�cij�

P �cij j cij� � P �ci�
P �cij� �P �ci j ci� � P�cj j ci��

� P�cj�
P �cij� �P�ci j cj� � P �cj j cj��

where k 6� i and k 6� j. This is the starting point for our
search in the N ÿ 1 model space.

From these starting points we improve the parameter
estimates of these other models and if one model then turns
out to be more likely than our current N class model, we
switch our focus, N , to the better model space.

Practically speaking, the repeated application of these
two model search methods is an e�ective search strategy
(the EM algorithm may of course converge to a local
minimum).

5. Experimental results

In this section we compare classi®cation models with and
without the ®rst order Markov modelling on a variety of
`synthetic' two class datasets. We also consider a di�cult
`real-world' dataset.

We compare model compression and parameter estima-
tion on three models: the `one class' (1C) model (this result
is the same with or without Markov modelling and corre-
sponds to the null hypothesis), `two class' (2C) model (the
best two class standard classi®cation model (assuming
independence between observations)), and the `Markov
two class' (M2C) model (the best two class Markov
classi®cation model).

The compression and estimated parameter values shown
are the median values as determined from 100 separate
trials on independently generated datasets.

5.1. Generating synthetic data

The test data has been generated from a simple two class
model with the observations having a single continuous
attribute speci®ed to a measurement accuracy of 0:05.

Three parameters describe the datasets generated: the
class separation (s), the class auto-transition (t), and the
dataset size (K). The class separation, s, is de®ned by ®xing

one class, N (0,1), and varying the mean of the other,
N�s;1�. The class auto-transition parameter, t, speci®es the
probability of generating an observation from the same
class as that of the preceding observation, P �ok 2 ci j okÿ1 2
ci�. Finally, K, is simply the number of observations gen-
erated.

The test data is pseudo-randomly generated from a
model with these parameters but, any particular dataset
thus generated, may well be slightly better described by
another similar model.

5.2. Comparing model compression

We compare the compression obtained by each of the three
models when varying each of the three parameters.

In Fig. 2 the auto-transition parameter, t, is varied while
the dataset size, K, is held constant at 1000 observations
and the class separation, s, is held constant at 2.0 sd.

The performance of the 1C and 2C models is approxi-
mately equivalent (i.e. more observations are required to
choose the 2C model over the 1C model) and, as one would
expect, their performance is independent of the auto-tran-
sition parameter, t, in the generating model.

When t � 0:5 we expect no bene®t to be gained from
using the Markov Model (as adjacent observations are
completely independent) and indeed we ®nd that M2C
model yields slightly worse compression than the other
models (about 0:02 bits/observation). However, for t < 0:4
and t > 0:6 the M2C model is the preferred hypothesis.

When t � 0:0 the M2C model gives a saving of about 0:5
bits per observation. The most that we could ever expect to
save with two class data is 1 bit per observation, so 0:5 bits
is not bad considering the signi®cant overlap between
classes separated by only 2.0 sd.

So, even in this extreme case where there is signi®cant
overlap between the classes and it is unclear as to whether
the best standard model has one or two classes, we ®nd that
the penalty for using the M2C model on truly independent

Fig. 2. Compression vs. auto-transition
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data is only slight and that when there is a modest de-
pendence between adjacent observations the M2C model
quickly becomes the most probable.

In Fig. 3 the class separation, s, is varied while the da-
taset size, K, is held constant at 1000 observations and the
auto-transition parameter, t, is held constant at 0:8.

When s � 0:0 sd (i.e. really one class) the 1C model is the
most probable (as one would expect). For s < 1:2 sd (i.e.
approximately one class) 1C model is still the preferred
model for this moderately sized dataset. Although seem-
ingly competitive for these small values of s the M2C yields
a longer message due to extra class and transition param-
eters stated in the hypothesis (22 bits longer than the 1C
model for 1000 observations when s � 0:0 sd).
For s > 1:2 sd the M2C model is the most probable. It is
not until s > 2:1 sd that the 2C model becomes signi®cantly
more probable than the 1C model.

In this instance the 2C model is never the best of the
three and the M2C model is preferred over the 1C model
with about 0:9 sd less separation between the generating
classes than that required by the 2C model.

In Fig. 4 the dataset size, K, is varied while the class
separation, s, is held constant at 2:0 and the auto-transition
parameter, t, is held constant at 0:8.

For log10 K < 2:3 (K < 200) the 1C model is clearly the
most probable. Above 200 observations the M2C model is
most probable of the three. The 2C model is preferred over
the 1C model at about log10 K > 3:2 (K > 1580).

So the M2C model is preferred over the 1C model with
nearly an order of magnitude less data than would be re-
quired by the 2C model.

5.3. Evaluation of parameter estimates

In the following ®gures only results from the M2C model
are presented. The estimated auto-transition parameter is
de®ned as the auto-transition probability found by the
program for class1 (i.e. P�ok 2 c0 j okÿ1 2 c0�) with the

other three transition probabilities being ignored. The
median, and the 10th and 90th percentiles for the values of
this parameter over 100 trails are also shown.

In Fig. 5 the auto-transition parameter, t, is varied while
the dataset size, K, is held constant at 1000 observations
and the class separation, s, is held constant at 2.0 sd.

The median of the estimated auto-transition parameters
is the same as the true value in the generating model (i.e.
unbiased). The larger variance in our predicted value when
t � 0:5 is to be expected as less accuracy is required when
stating the model parameter at this point (i.e. slightly dif-
ferent generating models will produce similar data). This
illustrates an interesting point about MML which will en-
code this model parameter at a reduced cost in this same
region.

In Fig. 6 the class separation, s, is varied while the
dataset size, K, is held constant at 1000 observations and
the auto-transition parameter, t, is held constant at 0:8.

When s � 0:0 sd (i.e. really one class) the median auto-
transition estimate is 0:5 (i.e. independence between
observations). For s > 1:5 sd the median estimate for, t, is
0:8 (unbiased around the generating model). Incidentally,

Fig. 3. Compression vs. class separation

Fig. 4. Compression vs. log10 dataset size

Fig. 5. Estimated auto-transition vs. model auto-transition
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this is the same point as the M2C model is preferred over
the 1C model (see Fig. 3).

In Fig. 7 the dataset size, K, is varied while the class
separation, s, is held constant at 2.0 sd and the auto-
transition parameter, t, is held constant at 0.8.

At a log10 K � 1:0 (K � 10) the median estimate for, t, is
about 0.56 (i.e. the observations are best considered as
being near independent). The median estimate for t as-
ymptotes to 0:8 (same as in the generating model) as K
increases. For log10 K > 2:4 (K > 250) no signi®cant fur-
ther improvement in the median estimate occurs although
the variance of the estimate continues to diminish. Note
that for K < 250 it is not surprising, given the class sepa-
ration of 2:0 sd, that many of the datasets generated do not
provide enough evidence to accurately recover the transi-
tion parameter of the generating model.

5.4. EM settling time comparison

The settling time is the number of EM algorithm iterations
required to minimise the models objective function with the

stopping criteria de®ned as: no signi®cant change (less than
0:01 bits) in message length in the next 30 iterations. The
last iteration that produced a change in message length is
taken as a measure for the settling time for the model on
the given data.

The three models (i.e. 1C, 2C, M2C) are again plotted in
the three ®gures that follow, however, the 1C model has a
constant settling time of 1 iteration.

In Fig. 8 the auto-transition parameter, t, is varied while
the dataset size, K, is held constant at 1000 observations
and the class separation, s, is held constant at 2:0 sd. The
2C model takes no account of the order in the dataset and
so the settling time is of constant cost. The M2C model
takes slightly longer to settle for 0:15 < t < 0:75, but is
signi®cantly faster otherwise.

In Fig. 9 the class separation, s, is varied while the da-
taset size, K, is held constant at 1000 observations and the
auto-transition parameter, t, is held constant at 0:8. Both
methods settle more rapidly as, s, increases. For s > 2:5 sd
the M2C model settles in about half the iterations required
by the 2C model.

Fig. 6. Estimated auto-transition vs. class separation

Fig. 7. Estimated auto-transition vs. log10 dataset size

Fig. 8. Settling time vs. auto-transition

Fig. 9. Settling time vs. class separation
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In Fig. 10 the dataset size, K, is varied while the class
separation, s, is held constant at 2:0 sd and the auto-
transition parameter, t, is held constant at 0:8. We ®nd that
M2C model utilises the extra auto-transition information
and converges faster than the 2C model in all cases.

5.5. Real world data

In order to evaluate the algorithms performance on more a
complex problem space a di�cult `real-world' dataset of
protein structure data was selected. The protein dataset
selected consists of 41731 pairs of protein dihedral angles
(/; w). Secondary structure classi®cation of such data is of
signi®cant interest in the area of protein modelling.

The angle pairs are constructed from approximately 230
separate proteins as detailed in Edgoose et al. (1998) and
the program was modi®ed to encode each protein segment
independently (i.e. the assignment of the ®rst observation
in a protein to a class is encoded from the un-conditional
class distribution). The von Mises distribution was used to
model both the / and w angle attributes.

The best Markov classi®cation model found had 19
classes and a message length of 266 973 bits. This 19 class
structure is shown in Fig. 11 with each class depicted by an
ellipse with centre (l/,lw) and dimensions ( 1����

j/
p , 1����

jw
p ). The

actual observations are overlaid to create a scatter plot
which is a square depiction of the surface of a torus and
hence wraps around at the edges.

The class model found correlates well with known bio-
logical structures such as Helix, Beta-sheet and Turn with
di�erent ¯avours of each represented in the di�erent
classes. Of particular interest were some classes of statis-
tical signi®cance due to their relationship with their
neighbours in the sequence. The classes 10 and 14 were
found to occur only at the transition between a run of Beta
and a run of Helix residues. Class 9, the most populous
class, was found to have very small kappa values (i.e. a
large variance), but a high probability of occurring in runs.

The explanation seems to be that certain small regions of
the protein are quite ¯exible and take on a structure almost
entirely determined by non-local residue interactions. For
further discussion refer Edgoose et al. (1998).

The best standard classi®cation model (i.e. assuming
independence between observations) found 27 classes with
a message length of 294 700 bits.

Thus, the Markov classi®cation model found represents
a 9.4% improvement in terms of compression as well as
having a simpler class structure. The search procedure for
the Markov model space was found to be e�ective and
consistent on this large and complex `real-world' dataset.

6. Conclusion

We have extended the MML un-supervised classi®er Snob
to model ordered datasets where the best classi®cation of
an observation need not be independent of the classi®ca-
tion of neighbouring observations. Speci®cally we model
the data as if it had been generated from a ®rst order
Markov process with the state at any point specifying the
class of the corresponding observation. Such a model is
commonly referred to as a Hidden Markov Model.

We de®ne a near optimal information measure for the
cost of stating such a model and a set of observations given
the stated model. This gives an objective criteria by which
we can judge two competing models which di�er in the
numbers of classes they contain given a speci®c dataset.
This measure is used to guide a robust un-supervised search
of the Markov classi®cation model space that correctly
balances model complexity against explanatory power.

Experimentally it has been shown that the MML infor-
mation measure for the Markov classi®cation model yields
improved class model selection results when modelling
sequential datasets even where there is only a modest
dependence between adjacent observations. This MML

Fig. 10. Settling time vs. log10 dataset size

Fig. 11. 19 class protein structure model
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implementation is shown to yield unbiased estimates of
model parameters and the number of EM iterations re-
quired to search the more complex Markov model space is
not signi®cantly di�erent from the number required for the
standard classi®cation model.

Finally, the Markov classi®cation model has been used
with consistent success on a large and di�cult `real-world'
protein dataset indicating that the search heuristics are
e�ective and the model search robust.
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