
Information Processing Letters 70 (1999) 127–139

A versatile divide and conquer technique for
optimal string alignment

David R. Powell∗, Lloyd Allison, Trevor I. Dix
Department of Computer Science, Monash University, Clayton, VIC 3168, Australia

Received 1 December 1997; received in revised form 1 March 1999
Communicated by R.G. Dromey

Abstract

Common string alignment algorithms such as the basic dynamic programming algorithm (DPA) and the time efficient
Ukkonen algorithm use quadratic space to determine an alignment between two strings. In this paper we present a technique
that can be applied to these algorithms to obtain an alignment using only linear space, while having little or no effect on the time
complexity. This new technique has several advantages over previous methods for determining alignments in linear space, such
as: simplicity, the ability to use essentially the same technique when using different cost functions, and the practical advantage
of easily being able to trade available memory for running time. 1999 Elsevier Science B.V. All rights reserved.

Keywords:Algorithms; Sequence alignment; Dynamic programming; Edit distance

1. Introduction

Alignment algorithms are used to align strings op-
timally under a given cost function. These algorithms
have a wide variety of different applications in molec-
ular biology, such as DNA sequence alignment, pro-
tein sequence alignment [14] and protein structure
alignment [17]. Aligning a pair of strings involves
matching characters from the two strings either with
each other or a null character, ‘- ’, to indicate an inser-
tion or deletion. Fig. 1 shows an example alignment of
two strings.

The well-known dynamic programming algorithm
(DPA) [10,15] can be used to find an optimal align-
ment for a number of different cost functions. The
DPA finds an alignment of minimum cost (an opti-
mal alignment) for a given cost function. Typical cost

∗ Corresponding author. Email: powell@cs.monash.edu.au.

ATACTAG-A
| ||| | |
A-ACTTGGA

Alternatively:

<A,A> <T,-> <A,A> <C,C>
<T,T> <A,T> <G,G> <-,G> <A,A>

Fig. 1. An example alignment of the strings ‘ATACTAGA’ and
‘AACTTGGA’.

functions include, in order of increasing complexity:
simple costs, each mutation cost is a constant; linear
(or affine) gap costs [4], insertions/deletions are costed
via a linear function; piecewise linear gap costs [4] and
concave gap costs [11]. An alignment can be consid-
ered as a way to edit one string into the other, thus the
cost of aligning strings is sometimes called theedit
costor edit distance.

0020-0190/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(99)00053-8

128 D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139

Assuming the strings are of similar length,∼n, then
the time complexity of the DPA is O(n2). The space
complexity is O(n2) if an alignment is required, or
just O(n) if only the edit cost is desired. In this paper
we briefly discuss the basic DPA and Hirschberg’s [8]
divide and conquer algorithm that allows the DPA to
compute an alignment in O(n) space. We then present
an alternative to Hirschberg’s algorithm which has
a number of advantages. This alternative has been
briefly described by Hirschberg [9], who attributes
it to Eppstein (unpublished), and used to compute
the basic edit distance. Here we show how it can be
applied to many other cost functions and can also be
combined with Ukkonen’s fast algorithm (see below)
to give a flexible, fast and space efficient alignment
algorithm.

Ukkonen [18] devised an algorithm that runs faster
than the basic DPA. On average, this algorithm has
time complexity O(n + d2), whered is the edit cost
between the two strings. If an alignment is required,
O(d2) space is needed, otherwise O(d) space can be
used to determine the edit cost. We briefly explain
Ukkonen’s algorithm, and present how our method
can be applied to reduce the space complexity of
Ukkonen’s algorithm to O(d) while still producing
an alignment (discussed in detail for both simple and
linear gap costs). Previously, retrieval of an alignment
in linear space from Ukkonen’s algorithm was done
by using Hirschberg’s [8] technique which is more
complicated (see [9, p. 137]) and less versatile than
that presented here.

A recent paper by Grice et al. [7] uses a similar
approach as that presented here, but they have a
different motivation. They wish to train a Hidden
Markov Model by using all possible paths through
the DPA matrix. While we are interested only in an
optimal alignment. Grice et al. do suggest a method for
the single best path, however, it is more complicated
than that presented here, and we also apply our
technique to the more advanced Ukkonen algorithm
(Section 4.1).

2. The basic DPA

The basic DPA with simple costs to align two
strings (As and Bs) uses an edit distance matrix
where each entryD[x,y] contains the edit cost for

D[0,0] = 0
D[i,0] = i, i=1..|As|
D[0,j] = j, j=1..|Bs|

for j = 1..|Bs|
for i = 1..|As|

D[i,j] = min(D[i,j-1] + insertCost,
D[i-1,j] + deleteCost,
D[i-1,j-1] +

(if As[i] = Bs[j] then
matchCost

else
mismatchCost))

Fig. 2. The DPA to determine minimum edit distance.

stringsAs[1..x] andBs[1..y]. The algorithm is given
in Fig. 2. To obtain an alignment using this algorithm
it is necessary to trace back through the matrix from
D[|As|, |Bs|] to D[0,0] following the choices that
were made in the min() function.

It is obvious that the DPA uses O(n2) time and
O(n2) space for theD matrix. However, each col-
umn of the DPA is calculated from the previous col-
umn only (or row), thus if an alignment is not required
it is possible to use only O(n) space (i.e., store only
the previous and current columns). The simple mod-
ification to achieve this is to modify all column in-
dexing to first be computed modulo 2 (e.g.,D[i, j] →
D[i, j mod 2]).
2.1. Alignment inO(n) space

Hirschberg [8] described an algorithm to deter-
mine the longest common subsequence (LCS) of two
strings in O(n) space and O(n2) time. The LCS prob-
lem is closely related to the edit distance problem.
Hirschberg’s algorithm splits theBsstring in half, i.e.,
at the middle column of theD matrix, and finds where
in the D matrix the optimal alignment crosses this
middle column. The crossing point is found by run-
ning the DPA forward on the first half ofBs, and in
reverse on the last half. Where the forward and re-
verse calculations meet an optimal crossing point is
found on the middle column and the crossing point is
therefore known to lie on the optimal alignment. Two
smaller alignment problems remain (the two halves of
Bs against the corresponding parts ofAs), these are
then solved recursively.

D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139 129

Fig. 3. An example of check pointing on the DPA for sequences CGCA and AAGT, using insertion, deletion and mismatch costs of 1 and a
match cost of 0.

Each recursion step in Hirschberg’s algorithm com-
putes half as much area of theD matrix as the previ-
ous. Using|D| to represent the size if theD matrix,
the total computation is|D| × (1+ 1/2+ 1/4+ · · ·),
the series converges to 2, thus since|D| is O(n2), the
time complexity is also O(n2). The space requirement
is O(n) because only a single column is needed at a
time to allow the determination of the next column.

2.2. Check pointing

The algorithm described below has the same benefit
as Hirschberg’s (i.e., reduce the space requirement to
linear inn without altering the time complexity from
O(n2)), but also has a number of other advantages.
These include simpler implementation (especially for
more complex cost functions), the ability to trade the
constant in the space overhead for the constant in the
running time, and the ability to be combined with the
faster Ukkonen’s algorithm (Section 4.1).

The idea of this algorithm is like Hirschberg’s, that
is, to split theD matrix continually in half. To achieve
this it is necessary to find a cell on the middle column,
columnq say (i.e.,q = |Bs|/2), that lies on the opti-
mal alignment. We want to determine a rowp such
that the cellD[p,q] lies on the optimal alignment.
This is done by having every cell after columnq carry
the row index of the cell on columnq it derived from.
Once theDmatrix is determined, the cellD[|As|, |Bs|]
will not only contain the edit cost, but also the desired
row indexp. Since this cellD[p,q] is known to lie
on the optimal alignment, the alignment problem can
be divided into two sub problems. That is, the align-
ment fromD[0,0] to D[p,q] and fromD[p,q] to
D[|As|, |Bs|]. So the algorithm then performs recur-
sion on each of these regions. Only two columns of
theD matrix are ever stored, the current column and
the previous column. As with the cost only DPA (see
last paragraph of Section 2), each column is dependent
only on the previous column.

130 D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139

Fig. 4. DPA with check pointing to determine alignment.

Recursion ceases when the region to be determined
consists of 1 or 2 columns (the base case). If there is
only 1 column, then the corresponding alignment is
a run of zero or more deletes. If there are 2 columns
then the alignment corresponds to zero or more deletes
followed by a mismatch or insertion followed by zero
or more deletes. These are simply determined from the
two columns available inD.

An example is given in Fig. 3 using a cost of 1 for
an insert, delete or mismatch and a cost of 0 for a
match. This example aligns the sequencesAs=CGCA
and Bs= AAGTto determine an optimal alignment,

there are in fact 4 optimal alignments for this example
(the arrows indicate the optimal alignment that will be
found). The first step computes the wholeD matrix
(though only 2 columns are stored at any given time).
The cell shown in bold is found to lie on the optimal
alignment (i.e.,D[p,q] from above). This cell defines
the two regions for recursion. The process continues
until the region consist of 1 or 2 columns from which
the alignment is determined directly.

It is important to note that in the example, we have
shown the values in theD matrix to be consistent at
each level of recursion. To do this the edit costs in

D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139 131

columnq must be stored so they can be used at the
next level of recursion. We refer to this storing of
the contents of cells on a column ascheck pointing
a column. Throughout this paper we will refer to this
method as a check point method.

For the simple cost alignment with the DPA it is
not strictly necessary to check point any columns at
all, and it is essentially this variant that Hirschberg [9]
attributes to Eppstein. It is possible to restart the top
left cell of each region with an edit cost of 0. The
more complex algorithms such as linear gap costs, or
Ukkonen’s algorithm do require this check pointing
because the matrix cells contain importantstateinfor-
mation that is required to restart the algorithm at the
next level of recursion. Thus for the DPA with simple
costs no check pointing is required, however we will
still refer to our modification of the DPA as the ‘DPA
with check pointing’ simply as a consistent basis for
referring to our method of modifying alignment algo-
rithms.

The DPA with check pointing is shown in Fig. 4. It
is worth noting a large portion of this algorithm is the
same as for the standard DPA (see Fig. 2). The later
half of the algorithm is to determine the split of the
D matrix and to perform the recursion. This general
form of the check pointing algorithm is maintained
when applied to different cost functions (and even
when applied to the Ukkonen algorithm, see Fig. 8).
This is a major advantage of this check point method,
it is to a large extent independent of the underlying
algorithm.

The check pointing method has also been ap-
plied to a variation of Ukkonen’s algorithm for three
strings [1]. The check pointing method reduces the
space complexity of this algorithm from O(d3) to
O(d2). Applying the check point method is similar to
the two string algorithm and relatively straightforward
to apply.

It is easily seen that this algorithm only requires
O(n) space. At any point through the DPA only two
arrays of size O(n) are used. When the DPA loop
finishes and the alignment cell is determined, the
checkpoint information is no longer needed and the
space can be re-used in the next recursive step.

The proof that this algorithm has time complexity
O(n2) follows the same reasoning as for Hirschberg’s.
The area computed of theD matrix is halved at each
step, plus an extra column. So the work done by the

DPA with check pointing is|D| ∗ (1+ 1/2+ 1/4+
· · ·)+ log2 |D|, where|D| is the size of theD matrix.
Since|D| is aboutn2 the time complexity is O(n2).
Fig. 5 shows the experimental results confirm this
analysis.

The test data for all sample runs in this paper were
generated randomly with an alphabet size of 26. First
stringAswas generated randomly, then stringBswas
generated fromAswith a fixed mutation probabilities
of 0.2, 0.1 and 0.1 for change, insertion and deletion,
respectively (mismatches to the same character were
allowed).

The extra column (and thus the log term in the time
complexity), is due to the check point algorithm as
presented here determining acell of theD matrix that
lies on the optimal alignment which is used in both
recursive sub-parts. Compare this to Hirschberg’s al-
gorithm which determines astep betweentwo cells on
the optimal alignment and therefore is able to exactly
halve theD matrix. It is straightforward to modify
the check point algorithm to behave like Hirschberg’s
in this respect, but the added complication gives little
practical advantage.

2.2.1. Trading space for time
A major advantage of our check pointing method

over Hirschberg’s, is that in practice the check point-
ing algorithm can be sped up by keeping more than
one check point for each run through the DPA matrix.
The work for the next step is then reduced by the num-
ber of checkpoints kept. That is, if 2 columns are check
pointed (at|Bs|/3 and 2|Bs|/3), the area of the DPA
matrix that needs to be recomputed is divided by 3 at
each step. The time/space complexities are unchanged,
but the constant in the running time can be reduced by
increasing the constant in the space required. This is a
nice feature because available memory can be traded
for running time. The running time constant relative to
the basic DPA is

∑
i=0(x + 1)−i wherex is the num-

ber of checkpoints.

3. DPA with linear gap costs

The simple costs used in the basic DPA are not
as biologically plausible as linear gap costs when
aligning DNA or protein sequences. Here a run of
insertions or deletions is treated as a single event and

132 D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139

Fig. 5. Comparison of the number of iteration of the loop in the basic DPA against that of the DPA with check pointing. BothN2/2 andn2 are
plotted. Note: thex-axis is the length of stringAsonly, and whileBswill be of similar length it will differ slightly.

given a costa · x+ b wherea andb are constants, and
x the length of the run. Simple costs are a special case
of linear costs witha = 1 andb= 0.

The basic DPA can be modified to compute an op-
timal alignment using a linear gap cost function (see
[4]). The DPA for linear gap cost has in each cell of
the DPA matrix 3 alignment costs—one each for the
3 possiblestatescorresponding to the last step, mis-
match, insert or delete. The linear gap cost DPA has
time complexity O(n2) and space complexity O(n2),
the same as for the basic DPA. Several methods have
attempted to reduce the space complexity by constant
factors see [16,19,3,5,6]. Myers and Miller [13] ap-
plied Hirschberg’s technique to reduce the space com-
plexity to O(n), however, their method is more com-
plicated than that presented here and our technique has
the practical advantage of being able to trade space for
time of execution.

The previously described check pointing method
can just as easily be applied to the DPA with linear
gap costs. There are two main differences, the first is
that for it to be possible to restart the DPA on a region

it is necessary to know the contents of the top left cell.
This is necessary because of the 3-state nature of the
alignment algorithm (it needs to be restarted with the
correct state information). As the DPA is being run
forward the check point column is saved (or check
pointed), then when that DPA step has finished the
contents of the cell on the optimal alignment,D[p,q],
is used to restart algorithm correctly.

The second difference is that it is necessary for
eachstate to carry the column index of the cell it
derived from on the check point column. That is, each
cell of the D matrix will contain 3 edit costs and
3 column indices, one each for the three possible states
(one state for each of the last possible operations,
mismatch, insertion or deletion). The same time/space
complexities apply as for the simple cost case (the
column check pointing can be done in O(1) time by
using pointers to columns).

One advantage of the check pointing method de-
scribed here over Hirschberg’s method is that the
check point algorithm for more complex cost func-
tions (e.g., piecewise linear or concave costs) remains

D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139 133

essentially the same as for linear gap costs. That is,
information needs to be carried forward about which
check point cell lies on the optimal alignment, and a
column of theD matrix needs to be saved so the al-
gorithm can be restarted from the split cell. Whereas
using Hirschberg’s method it becomes much more dif-
ficult to find the split point.

4. Ukkonen’s algorithm

Ukkonen [18] (and independently Myers [12]) pre-
sented an alignment algorithm that runs in O(nd) time
in the worst case and O(n+d2) on average (wheren is
the length of the strings, assumed to be of the same or-
der, andd is the edit cost). This algorithm uses O(d2)

space or if no alignment is required O(d) space. A nec-
essary condition for this algorithm is that all mutation
costs are positive integers, and that a match costs 0.
If however, the chosen costs do not meet these crite-
ria it may be possible to choose costs that do meet
the criteria and leave the optimal alignment unchanged
(see [2]).

Ukkonen’s algorithm speeds up the basic DPA by
recognizing a number of facts about the DPA matrix:
not all the entries ofD are needed, the diagonals are
monotonic non-decreasing, and only the end point of a
run of matches is important. An alternative matrixU is
used in Ukkonen’s algorithm. EntryU [ab,d] contains
the maximum distance obtainable along stringAs
for cost d on diagonalab. A row of the U matrix
corresponds to a diagonal of theD matrix, and a
column of theU matrix to a “contour” of fixed cost
in theD matrix. As an example assume DPA matrix
cellD[i, j] is on the optimal alignment, then in terms
of the U matrix this cell will be on the diagonal
ab= i− j , and thusU [i− j,D[i, j]] = i. Ukkonen’s
algorithm is given in Fig. 6.

The outer loop of Ukkonen’s algorithm loops over
each entry in theU matrix determining for diagonalab
and costd how far along stringAscan be reached. This
is determined by looking atU with a costd − 1 on the
same diagonal,ab, and the two neighboring diagonals,
ab + 1 andab − 1. The inner loop then extends this
distance while stringsAsandBsmatch (corresponding
to a run of matches down a diagonal of theD matrix).
As with the basic DPA, the alignment is obtained by

{U[ab,d] = max a s.t. D[a,b] = d
where ab = a-b

= -infinity if no such a exists}

U[0,0] = max a s.t. As[1..a] = Bs[1..a]
U[ab,d] = -infinity, if |ab|>d

{ Outer loop, iterated until
U[|As|-|Bs|,d] = |As| }

U[ab,d] = max(U[ab+1, d-insertCost],
U[ab, d-mismatchCost]+1,
U[ab-1, d-deleteCost]+1)

{ Inner Loop, extends diagonal
on a run of matches }

while
(As[U[ab,d]+1] = Bs[U[ab,d]-ab+1])
U[ab,d] += 1

Fig. 6. Ukkonen’s algorithm for simple mutation costs.

tracing back through the choices made in the max()

function when calculating theU matrix.
An example of theU matrix is shown in Fig. 7 for

the same example as shown for the DPA in Fig. 3. In
this figure, theU matrix has for diagonalab=−1 and
cost 2 the contents 2 (i.e.,U [−1,2] = 2), this means
that for a cost of 2 on diagonalab = −1 the furthest
that can be reached onAs is the second character. In
terms of theD matrix this corresponds to the cell with
row 2 and column 2− (−1)= 3 which (from Fig. 3)
contains the cost 2.

Thus in terms of theDmatrix, Ukkonen’s algorithm
calculates the entries in a region around the final
diagonal that has a width equal to the edit distance
of the two strings. However “holes” are left in theD
matrix for each run of matches. For a brief discussion
of the complexity of this algorithm see Section 4.2.

Each column of theU matrix is completely defined
within terms of the previous column (for simple costs),
hence it is possible to calculate the edit cost by using
only O(d) space (the wholeU matrix is required if the
alignment is desired). This is simply done by changing
all cost indexing of theU matrix to be computed
modulo 2 (i.e.,U [ab,d] → U [ab,d mod 2]). This
is identical to reducing DPA to O(n) space when the
alignment is not wanted (see start of Section 2).

134 D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139

Fig. 7. An example of check pointing with Ukkonen’s algorithm for sequences CGCA and AAGT, using insertion, deletion and mismatch costs
of 1 and a match cost of 0.

4.1. Ukkonen’s algorithm in linear space

Myers [12] applied Hirschberg’s technique to his
version of Ukkonen’s alignment algorithm to reduce
the space required to determine an optimal alignment
from O(d2) to O(d). This maintains the worst case
time complexity of O(nd), but does not keep the
average complexity at O(n+ d2); in fact Myers does
not discuss the expected time complexity of his linear
space algorithm. The reason is that the work is not
distributed evenly over the Ukkonen matrix, making
it impossible to split the work evenly into two halves.
The technique we describe here to reduce the space
complexity of Ukkonen’s algorithm to linear, has
the same advantages over Myers [12] as our check
pointing DPA has over Hirschberg [8]. It is simpler,
especially for more complex cost functions because it
is not necessary to run the algorithm in reverse (as it is
with Hirschberg’s). The other advantage is that there
is an easy practical trade off between the running time
and the space overhead.

The check pointing technique used on the DPA (on
theD matrix) can be adapted to be used on theU
matrix with Ukkonen’s algorithm. The outer loop of
the Ukkonen algorithm works along the columns of
the U matrix. The column with indexd/2 is check
pointed, and a cell on this column that lies on an
optimal alignment is determined. This is done as
with the DPA version by having each cell carry extra
information forward about which cell on the check
point column it derives from. Knowing a cell on the
optimal alignment allows theU matrix to be split into
two smaller regions. Recursion is then used on these
two smaller regions until the complete alignment is
determined.

As with the linear gap cost version of the DPA with
check pointing it is necessary to store the check point
column of theU matrix. This is because the contents
of the split cell (i.e., the distance along theAsstring),
is needed for recursion on the second half of theU

matrix.

D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139 135

Fig. 8. Ukkonen’s algorithm with check pointing using simple mutation costs.

An example of this is shown in Fig. 7. Note that
this example is for the same sequences as used in
Fig. 3. For a given cell,U [ab, c], of the Ukkonen
matrix, the corresponding cell of the DPA matrix is
D[U [ab, c],U [ab, c] − ab]. The cell on the check
point column known to lie on the optimal alignment
is shown in bold at all steps.

The first time through theU matrix, the edit cost
d , is unknown, so it is not possible to know which
column is the middle column. Hence, the first time
through, the column at costd/2 cannot be check
pointed. The simplest solution is to first run the cost
only version of Ukkonen’s algorithm to determine
the edit cost, then run the check point algorithm to

determine the alignment. While this does work, it is
not optimal. A better solution, is to check point the
column when half of the stringAshas been processed
(i.e., atn/2). This serves as a fair approximation to
d/2 assuming the mutations are evenly distributed
along the strings. Note that this choice on the first pass
of the algorithm does not change the time complexity,
it simply improves the constant.

A complication with adding the check pointing
technique to the Ukkonen algorithm arises when some
mutation costs are> 1. This is because each column
of theU matrix is no longer simply defined in terms
of the previous column, but in terms of the previousx
columns, wherex is the maximum mutation cost. This

136 D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139

is overcome by check pointingx consecutive columns
rather than a single column.

Fig. 8 shows Ukkonen’s algorithm with check
pointing added. This is for simple mutation costs
where all mutations have cost 1. For more complex
costs both the modulo size and the number of columns
check pointed must be increased to the maximum
mutation cost. It is worth comparing this algorithm to
the DPA with check pointing (Fig. 4) since they both
have a very similar structure. Similar check pointing
steps are added around the standard algorithm in both
cases. This similarity when the check pointing method
is applied to different algorithms and even different
cost functions is a major advantage of this technique.

4.2. Complexity of Ukkonen’s algorithm with and
without check pointing

The worst case complexity of Ukkonen’s algorithm
is O(nd) and corresponds to the largest area of theD

matrix equivalent to that calculated in theU matrix.
This area in theD matrix is of lengthn, along the
final diagonal, and of widthd around that diagonal.
The expected time complexity is O(n + d2) which
is almost always achieved. A brief explanation of
this expected time complexity follows (for a fuller
explanation see [12]).
• The number of iterations of the outer loop isd2/2.
• The inner loop is iteratedL = n − d times for

the optimal alignment. If all matches off the opti-
mal alignment are assumed to be coincidental, the
expected length of such a coincidental match is
1/(Σ−1) (whereΣ is the alphabet size). There are
∼d2/2 positions in the matrix where such matches
can occur. So expected number of inner loop itera-
tions

=L+ d2

(2(Σ − 1))
.

If we now consider the check pointing algorithm,
where the edit distance is already known so theU
matrix can be split atd/2 we obtain the following:
• Outer loop iterations

= d
2+ 1

2
+ d

2+ 2

4
+ d

2+ 6

8
+ · · ·︸ ︷︷ ︸

∼ log2 d terms

≈ d2+ log2 d ≈ d2.

• Inner loop iterations

≈L(1+ log2d)

+ d2

2(Σ − 1)

(
1+ 1

2
+ 1

4
+ 1

8
+ · · ·

)
.

Figs. 9 and 10 show plots for experimental data.
These plots of the check pointing algorithm loop
counts do not take into account first working out the
edit distance.

The expected time complexity of Ukkonen’s algo-
rithm with check pointing to determine the alignment
is thus O(n log2d+ d2); in practice thed2 term domi-
nates. The Ukkonen algorithm with check pointing im-
plemented for this paper (not particularly optimized)
was found to be typically 3.5 times as slow as the stan-
dard Ukkonen algorithm (see Fig. 11). Run times of
the check point algorithm included running the cost
only version of the Ukkonen algorithm first, followed
by Ukkonen’s algorithm with check pointing to deter-
mine the alignment. It is expected that if the first iter-
ation through theU matrix had check pointed atn/2,
as previously suggested, it would have been only 2.5
times as slow as the standard Ukkonen algorithm.

As with the DPA version of the check pointing
algorithm, it is possible to trade running time for space
overhead by keeping more than one check point. This
has the effect of modifying time/space complexity
constants (see Section 2.2.1).

5. Ukkonen’s algorithm with linear gap costs

Ukkonen’s algorithm has been applied to aligning
strings using linear gap costs [20]. The check point-
ing method can also be applied to this algorithm so
an alignment can be determined in linear space. Little
change needs to be made to the check pointing algo-
rithm of the previous section to produce alignments
using linear gap costs. Linear gap costs are charged as
a + bx wherex is the length of a gap. As mentioned
in Section 4.1 the number of columns of theU matrix
that must be check pointed is equal to the maximum
mutation cost. Thus for linear gap costs the number of
consecutive columns to be check pointed isa+b (pro-
vided this is greater than the mismatch cost, which is
typically the case).

As with the check pointing DPA for linear costs,
each cell of the matrix contains 3 distances, one each

D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139 137

Fig. 9. Comparison of iterations of the outer loop in Ukkonen’s algorithm with and without check pointing. StringA was generated with length
5000, stringB was mutated from this so will be of similar length, but slightly different.

Fig. 10. Comparison of iterations of the inner loop in Ukkonen’s algorithm with and without check pointing. StringA was generated with length
5000, stringB was mutated from this so will be of similar length, but slightly different.

138 D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139

Fig. 11. Actual running time of standard Ukkonen algorithm against Ukkonen’s algorithm with check pointing. StringAswas generated with
length 5000, stringBswas mutated from this so will be of similar length, but slightly different. (Timings done on a Pentium 100 with 16 Mbytes
RAM running Linux 2.0.0.)

for the three possible step directions into the cell. Thus
the check pointed column must also store 3 distances
in each cell. Also, since each cell of theU matrix
contains 3 distances, it is necessary to carry forward
for each one, the row index of the cell it derived from
on the check point column. This is almost identical
to the modifications necessary for the linear gap cost
DPA in Section 3.

Apart from these differences the check pointing
algorithm on the Ukkonen matrix with linear gap costs
is the same as that for simple mutation costs.

This is a considerable advantage over the method
employed by Myers [12], although Myers investi-
gated only simple mutation costs. The check point-
ing method becomes no more complicated with more
complex mutation costs.

6. Conclusion

We have presented a check pointing technique to
modify alignment algorithms to produce an alignment

in linear space with little or no effect on the time
complexity. This method had been previously applied
to the simple DPA with simple costs. We showed
the advantages of this method over other methods. It
is easier to implement especially for more complex
cost functions, and the check point algorithm is very
similar even when applied to different alignment
algorithms. There is also the added practical bonus
of being able to run the program faster by using
more check points. The check pointing technique
when applied to Ukkonen’s algorithm produces an
alignment algorithm that uses O(d) space and runs in
O(n log2 d + d2) time on the average.

References

[1] L. Allison, A fast algorithm for the optimal alignment of three
strings, J. Theoret. Biol. 164 (1993) 261–269.

[2] L. Allison, Normalization of affine gap costs used in optimal
sequence alignment, J. Theoret. Biol. 161 (1993) 263–269.

[3] S. Altschul, B. Erickson, Optimal sequence alignments using
affine gap costs, Bull. Math. Biol. 48 (1986) 606–616.

D.R. Powell et al. / Information Processing Letters 70 (1999) 127–139 139

[4] O. Gotoh, An improved algorithm for matching biological
sequences, J. Molecular Biol. 162 (1982).

[5] O. Gotoh, Alignment of three biological sequences with an
efficient traceback procedure, J. Theoret. Biol. 121 (1986)
327–337.

[6] O. Gotoh, Pattern matching of biological sequences with
limited storage, CABIOS 3 (1987) 17–20.

[7] J. Grice, R. Hughey, D. Speck, Reduced space sequence
alignment, CABIOS 13 (1) (1997) 45–53.

[8] D. Hirschberg, A linear space algorithm for computing maxi-
mal common subsequences, Comm. ACM 18 (6) (1975) 341–
343.

[9] D. Hirschberg, Serial computations of Levenshtein distances,
in: A. Apostolico, Z. Galil (Eds.), Pattern Matching Algo-
rithms, Oxford University Press, 1997, pp. 123–141.

[10] V.I. Levenshtein, Binary codes capable of correcting deletions,
insertions and reversals, Soviet Phys. Dokl. 10 (8) (1966) 707–
710.

[11] W. Miller, E.W. Myers, Sequence comparison with concave
weighting functions, Bull. Math. Biol. 50 (2) (1988) 97–120.

[12] E.W. Myers, An O(nd) difference algorithm and its variations,
Algorithmica 1 (1986) 251–266.

[13] E.W. Myers, W. Miller, Optimal alignments in linear space,
CABIOS 4 (1) (1988) 11–17.

[14] S.B. Needleman, C.D. Wunsch, A general method applicable
to the search for similarities in the amino acid sequence of two
proteins, J. Molecular Biol. 48 (1970) 443–453.

[15] P.H. Sellers, On the theory and computation of evolutionary
distances, SIAM J. Appl. Math. 26 (4) (1974) 787–793.

[16] P. Taylor, A fast homology program for aligning biological
sequences, Nucleic Acids Res. 12 (1984) 447–455.

[17] W.R. Taylor, C.A. Orengo, Protein structure alignment, J. The-
oret. Biol. 208 (1989) 1–22.

[18] E. Ukkonen, On approximate string matching, Found. Comput.
Theory 158 (1983) 487–495.

[19] K. Watanabe, Y. Urano, T. Tamaoki, Optimal alignments of
biological sequences on a microcomputer, CABIOS 1 (1985)
83–87.

[20] C.N. Yee, L. Allison, Fast string alignment with linear indel
costs, Technical Report 92/165, Monash University, Depart-
ment of Computer Science, Clayton, Vic., Australia, 1992.

