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Abstract

A method has been developed for discovering patterns in DNA sequences. Loosely based on the well-known Lempel Ziv model
for text compression, the model detects repeated sequences in DNA. The repeats can be forward or inverted, and they need not
be exact. The method is particularly useful for detecting distantly related sequences, and for finding patterns in sequences of biased
nucleotide composition, where spurious patterns are often observed because the bias leads to coincidental nucleotide matches. We
show here the utility of the method by applying it to genomic sequences of Plasmodium falciparum. A single scan of chromosomes
2 and 3 of P. falciparum, using our method and no other a priori information about the sequences, reveals regions of low
complexity in both telomeric and central regions, long repeats in the subtelomeric regions, and shorter repeat areas in dense
coding regions. Application of the method to a recently sequenced contig of chromosome 10 that has a particularly biased base
composition detects a long internal repeat more readily than does the conventional dot matrix plot. Space requirements are linear,
so the method can be used on large sequences. The observed repeat patterns may be related to large-scale chromosomal
organization and control of gene expression. The method has general application in detecting patterns of potential interest in
newly sequenced genomic material. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the last few years, the amount of DNA
sequence material available has been increasing expo-
nentially. A major challenge facing computational
molecular biology is the post-sequencing analysis of
patterns and motifs in genomic DNA sequences. Since
patterns and motifs appear as related sequences at more
than one point in the genome, one pattern-finding
strategy is to look for repetition. Repetitions can have
many different biological meanings. For example, regu-
latory elements, structural features of the DNA, and
low complexity regions all show up as repetition [1].
Since repetition is rarely exact, the problem becomes
one of finding related patterns whose location and
degree of similarity are not known in advance.

The more general the repeat-finding strategy, the
greater the possibility of finding new regions of biolog-
ical interest. Specific motif searching engines, such as
those described in [2], rely on prior biological knowl-
edge, and are therefore limited to finding known pat-
terns in new sequences. In some cases restrictive
assumptions must be made, or the range of organisms
restricted. The well-known dot matrix plot is a general
method for looking at relatedness. In this method,
subsequences are scored as ‘matches’ when they show
at least as many matches, within a specified window, as
a user-determined stringency level.

A particular difficulty of searching for relatedness
within sequences with biased composition is that the
nucleotide bias may obscure a real relationship between
sequences. In dot matrix plots of biased sequences,
chance ‘matches’ due to increased coincidental match-
ing of bases appear as a noisy background, and can
make it difficult to detect real repeats, particularly
when the repeats are only approximate. Scientists work-
ing with P. falciparum, with an AT content of �80%
[3], experience a similar problem when doing BLAST
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searches, as many ‘matches’ reflect only this composi-
tional bias. Pre-filtering programs such as SEG [4] can
remove such areas of low compositional complexity
from the query sequence, but one consequence is that
information that may be present in these sequences is
ignored.

Information theory gives us a way out of this
dilemma, by linking probability, complexity, and com-
pression. Shannon showed that, in an optimal code, the
length of a code word for an event of probability p(E)
is − log2(p(E))bits [5]. When sending a message con-
taining a DNA sequence, if the four bases were equally
probable, the most efficient code, call it code 1, would
be to assign a 2-bit code word to each base, e.g.
00, 01, 10 and 11. If, however, the probabilities of the
bases were 1

2,
1
4,

1
8 and 1

8�, giving them code words of
length 1, 2, 3 and 3 bits, e.g. 0, 10, 110 and 111 (code 2)
would result in an average message length of 13

4 bits per
base, which is better than code 1, providing that these
probabilities apply throughout the sequence. But if the
data are really uniform, with all four bases equally
probable, then code 2 requires 21

4 bits per base on
average, which is worse than using code 1. We can use
message lengths to see which is the shorter code, and
therefore a better model for a sequence.

The complexity of a sequence is defined to be its
message length under an optimal code. Shannon shows
how to calculate this length without actually encoding
the sequence [5]. We do not usually encode sequences,
but rather just calculate what the message length would
be, using Shannon’s result. But for simplicity we often
write of codes and message lengths as though the
sequences were being encoded. In many cases it is not
possible to calculate probabilities exactly or to compute
an optimal code. However, a message length in any
comprehensible code, i.e. a code that is decodable with-
out hidden knowledge, is a valid upper bound on the
complexity of a sequence, and there are many practical
techniques for forming very good codes. It should also
be mentioned that the technique of arithmetic coding
[6] can in effect allocate a code word of non-integer
length to an event, E, so it is not necessary to round
− log2(p(E)) up. In most of the more complicated
models and codes, the probabilities of the characters,
(e.g. DNA bases), vary from position to position, for
example being conditional on the previous k bases in
the case of a kth-order Markov model for DNA.

Such models and codes depend on multi-state distri-
butions, e.g. four-state for DNA and RNA, and 20-
state for protein sequences. Wootton and Federhen
[4,7] defined the notion of local compositional complex-
ity, which is calculated from the multi-state distribution
in sliding windows. The original application was to
mask out low complexity regions which cause false-pos-
itives in searches of sequence databases, with a later
application to modelling the domain structure of

proteins [1,8]. Pizzi and Frontali [9] have applied Woot-
ton and Federhen’s SEG algorithm [4] to P. falciparum
proteins, finding non-globular domains of low complex-
ity that appear as insertions of material not found in
homologous proteins in other species. Wan and Woot-
ton [10] have also described a measure for global
compositional complexity and used it to explore coding
regions of DNA in a number of species. They found the
median global compositional complexity of P. falci-
parum coding regions to be considerably lower than
that of a number of other eukaryotic species.

Compression is a well-known computer science tech-
nique that takes advantage of repetition to reduce the
size of a file. The theoretical upper limit of achievable
compression, or entropy, is closely related to message
length. Our interest in compression here is not for
saving file space or communication bandwidth, but in
measuring the fit between a model and a sequence.
Agarawal and States [11] and Grumbach and Tahi [12]
recognised the relevance of compression to pattern
discovery in biological sequences. Loewenstern and Yi-
anilos [13] modified a popular file compression al-
gorithm for use with DNA sequences by allowing a
certain number of mismatches against past ‘contexts’.
Unfortunately their algorithm has several dozen
parameters which do not have obvious biological inter-
pretations. Rivals and Dauchet used a compression
algorithm that joins nearby exact repeats, allowing
some mismatch in the join, thereby making some al-
lowance for mutations within approximate repeats [14].
The method we use in this paper explicitly models
repeated subsequences and mutation in DNA.

Using information theory, we have developed a
method for detecting similarities in DNA sequences
[15,16]. Our method does not require any a priori
knowledge about the motifs to be detected or about the
sequences under observation, but can utilise such infor-
mation where the intent is to search for more specific
patterns. Importantly, our method does not require the
user to guess at the level of similarity or to set parame-
ters in advance. The method is inspired by the well-
known Lempel Ziv (LZ) model used for data
compression [17], where matches to previous subse-
quences are sought. Unlike LZ, the model we use for
DNA sequences allows both inexact and reverse-com-
plementary repeats within a sequence, as well as the
forward and exact repeats used in data compression.
Particular advantages of the method include its ability
to simultaneously detect different kinds of repeating
regions within a single scan of the same genome, the
ability to differentiate and quantitate the degree of
similarity between different related regions in the se-
quence, and the ability of the method to detect long,
significant approximate repeats over a background of
smaller repeat units. We demonstrate these advantages
by showing the application of this compression tech-
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nique to the entirety of chromosomes 2 and 3 of P.
falciparum and to a fragment of chromosome 10. The
genome of P. falciparum presents special challenges
because of its biased nucleotide composition of 80%
A+T [3].

2. Methods

2.1. A statistical model for DNA sequences

Our model of DNA [15,16] is based on very general
biological knowledge as follows: DNA subsequences
can be duplicated and, once there are two or more
copies of a subsequence, the copies can individually
accumulate mutations and hence diverge. In addition,
the general composition of DNA in a particular organ-
ism may be biased and can be modelled, in part, by a
simple ‘base model’. In our implementation we have
used a low-order Markov model as the base model, but
other models are possible. No additional biological
information is inherent in our model, which considers a
DNA sequence to be a mixture of (i) possibly biased
DNA generated by a base model; and (ii) approximate
repeats in either the forward or reverse-complementary
senses. Each repeat is a copy of some earlier subse-
quence but can differ from the original by mutations
(changes, insertions and deletions), as in sequence align-
ment. The model has a small number of parameters
governing the base sub-model, the rate and length of
repeats, and the rates of mutations within repeats. The
parameters are estimated from the sequence itself by an
expectation maximisation process [18–20].

Fig. 1 shows our DNA model as a probabilistic finite
state automaton (PFSA), equivalently a hidden Markov
model (HMM). The automaton is probabilistic in that
the transitions out of each state have probabilities (not
shown) associated with them. The base model is la-
belled ‘B’ and is treated as a ‘black box’ in the diagram.
The current implementation allows the base model to
be either a zero-order or a first-order Markov model;
the work described here employs the latter option. A
given sequence may be generated entirely by the base
model. However, if there is an approximate repeat, its
second occurrence can be generated by making a transi-
tion to the R1 (repeat) state and stating the start
position of the original occurrence. From there, state
R2 and associated transitions allow the subsequence to
be copied, possibly with mutations, until eventually the
model returns to the base model B. If the repeat unit is
long enough and of sufficient fidelity, the explanation
involving the repeat mechanism will be more probable
than that using the base model only. A further set of
states, R1� and R2� (not shown), allow for (approxi-
mate) reverse-complimentary repeats. Some alternative
architectures for the model have been examined and are
continuing to be investigated.

The states associated with repeats amount to an
alignment sub-model; here one sequence is being
aligned with itself and it makes sense to align later parts
of the sequence with earlier parts of the sequence. If a
sequence is explained by paths through the repeat
states, those parts of the explanation amount to a local
aligment of the sequence against itself. The local align-
ments can be combined, not necessarily in order, and
are shown in the two-dimensional plots described in the
next section.

Each transition of the model has a probability associ-
ated with it; these probabilities are the model’s parame-
ters. The probability of a path of transitions which
generates a given DNA sequence is the product of the
probabilities of the individual transitions making up the
path. A dynamic programming algorithm (DPA)
[15,16] can be used to find an optimal path. Given a
path, the model’s parameters can be estimated from the
transition frequencies in the path. The probabilities of
the transitions out of a state correspond to a multino-
mial distribution and Boulton and Wallace [21] give the
required theory. Changing the model’s parameters may
cause a new path to become optimal which may lead to
further changes of parameters and so on. This expecta-
tion maximisation process must converge and it does so
quickly. In theory it could converge to only a local
optimum, but this is not a problem in practice. The
probability of a DNA sequence, and hence its com-
pressed message length, can be calculated given a fully
parameterised model. One could seek a single optimal

Fig. 1. Finite state machine for generating strings. From the base
state, B, the machine can generate ‘random’ characters, returning to
the base state. It can also start a repeat, moving to state R1, then to
R2. From state R2, characters can be copied from the source
substring, but characters can also be changed, inserted or deleted.
The auxiliary state R1 is simply there to ensure that invisible events
are prohibited, i.e. at least one character must be output before
returning to B. The repeat ends with a return to the base state. The
base state is also the start and end state of the machine. Many
variations on the ‘architecture’ of the machine are possible to incor-
porate prior knowledge while staying within the general framework.



L. Stern et al. / Molecular & Biochemical Parasitology 118 (2001) 175–186178

path through the model to generate a given DNA
sequence. However, it has been shown that compari-
son based on a single optimal alignment gives biased
estimates of parameters and underestimates probabili-
ties [21]. Two different paths are different hypotheses
about how the model could create the data, so their
probabilities can, and should, be added as has been
done for pair-wise sequence alignment under PFSAs
[22], giving a less-biased estimate of probabilities and
parameters [21]. Each state in a PFSA has only a
finite number of transitions leading into it and path
probabilities are combined where paths meet at a
state; the computer implementation actually works
with -log probabilities, for numerical reasons.

In reality, repeats accumulate in DNA over time,
and can overlap in complex ways. Fully unravelling
this history is a difficult combinatorial problem; the
simplifications of our model form an acceptable ap-
proximation to reality, while allowing a reasonably
efficient inference algorithm. For example, it operates
‘left to right’, not distinguishing between the situation
where the subsequence �� is a copy of �, and vice
versa.

2.2. Implementation of the statistical model

Overall compression gives a general picture of the
presence of repeats in a sequence. We calculate the
compressibility under an optimal code without actually
encoding the data. A localised picture is often more
useful in terms of biological relevance. We have found
it useful to produce four distinct kinds of output from
an input sequence of nucleotides. The outputs are: (1)
a model, with probabilities for starting, continuing,
and ending repeats, estimated using an expectation
maximisation process [18,19]; (2) a single number mea-
suring the compressibility of the entire sequence, ex-
pressed in bits per nucleotide, i.e. information content
per nucleotide; (3) a plot showing how compressibility
varies along the length of the DNA sequence, calcu-
lated in average bits per nucleotide in a local region;
and (4) a two-dimensional plot showing how previous
subsequences have contributed to compression of the
sequence, and showing their location. In the two-di-
mensional plot, the probability that one subsequence
contributed to another subsequence is shown by
brightness. The plot is superficially similar to the fa-
miliar dot matrix plot, with grey-scale level indicate
probability contributions within the statistical model.
Two-dimensional plots, and also conventional dot-
plots, are necessarily limited in resolution because of
computer memory and disk sizes, with each dot repre-
senting hundreds or even thousands of bases for long
sequences. In contrast, one-dimensional plots, and
their file representations, are compact enough to be

kept at full resolution, allowing features to be located
precisely, even in very long sequences.

The time complexity of our basic algorithm is
quadratic in the length of the sequence, resulting in
relatively slow performance on very long sequences.
However, we have implemented a heuristic that speeds
up processing significantly. Space requirements are lin-
ear in the length of the sequence, so the use of the
heuristic makes it feasible to work on sequences of
millions of nucleotides, i.e. whole chromosomes. We
start with the assumption that most important approx-
imate repeats will contain some small exact repeats,
and use this assumption to determine where in the
sequence to concentrate our search for approximate
repeats. We construct a hash-table which contains k-
tuples and their locations in the sequence, where k is a
constant, typically in the range 6–16. A match in the
sequence with a k-tuple ‘turns on’ a region of �5
nucleotides around the match. A region is turned off
when its paths are making only a negligible contribu-
tion to the probability of the sequence [15]. In contrast
to the k-mismatch problem, which has been used to
find approximate repeats in DNA sequences [23], no
assumptions are made about the overall number of
mismatches. Regions can grow, shrink, merge, or be
turned off. Adjusting the value of k allows the al-
gorithm to process long sequences quickly, at some
loss of accuracy. Note that k is a parameter of the
speed-up heuristic; it is not a model parameter, as
such. Ideally one would use k=1, given a fast enough
computer. A useful technique, particularly for newly
sequenced material, is to perform a rapid scan of a
large sequence, such as an entire chromosome, in an
approximate manner, to give a general idea of where
the interesting regions are located, and then to ‘zoom
in’ on these areas, detecting more subtle patterns by
using less restrictive assumptions.

3. Results and discussion

3.1. Compressibility across P. falciparum chromosomes

The DNA sequences for chromosomes 2 and 3 of P.
falciparum have been determined [24,25]. Chromosome
2 is 947,103 base pairs in length, with a biased base
composition of 81% A+T content overall [24]; chro-
mosome 3 is 1,060,106 nucleotides in length, with 80%
A+T content [25]. The biased base composition of
these chromosomes implies that the sequences will be
compressible, and poses challenges in looking for addi-
tional patterns over and above this base level of
compressibility.

Using our model to compress the sequences of chro-
mosomes 2 and 3, we achieved compression of 1.556
bits per nucleotide for chromosome 2 and 1.586 bits
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per nucleotide for chromosome 3, setting the heuristic
parameter k=16 nucleotides, i.e. this is an upper
bound. The values obtained are better than the theo-
retical maximum compression achievable without in-
voking repeats or context, which is �i−pi log2 pi, or
2.0 bits per nucleotide for random nucleotide se-
quences, and �1.7 bits per nucleotide for sequences
with the biased A+T composition of the P. falci-
parum chromosomes. The compression observed using
our method represents the combined effects of the
biased base composition, regions of low complexity,
regions containing multiple tandem short repeat ele-
ments, and approximate repeats of long subsequences.
Sequences that are associated with lower information
content are more compressible, indicating relatedness
to other sequences by some form of repetition.

Compressibility is not uniform across the chromo-
some, as seen when the average information content
across a small window is plotted for the length of the
chromosome. It is clear from the plots of compressibil-
ity along both chromosomes 2 and 3 (Fig. 2a and b)
that the ends are more compressible than the middle,
and that there are small, clearly defined regions of
compressibility in the middle.

We have also explored chromosome 3 in the context
of chromosome 2, allowing sequences in chromosome
3 to be repeats from either chromosome 2 or 3 (or
both), by concatenating the two chromosomes and
running the algorithm. The overall compression of the
concatenated chromosomes is 1.538 bits per nucle-
otide, less than the figure obtained for either chromo-
some alone. The additional compression must be
interpreted to mean that there are regions that show
similarity across both chromosomes.

The compressibility plot of chromosome 3, com-
puted in the context of chromosome 2 (Fig. 2c), shows
additional areas of low information content, over and
above those seen on the plot of chromosome 3 with-
out this context (Fig. 2b). The additional areas include
sizeable regions at the ends of the chromosome and
one particularly striking spike of low information con-
tent that can be seen �100 kb from the 5� end of the
chromosome. Further analysis shows that the central
spike represents the close relationship between the re-
gion 116–121 kb on chromosome 3, which includes
the clag 3.1 gene PFC0110w that encodes a cytoadher-
ence-linked asexual protein [26], and the region 839–
844 kb on chromosome 2 that contains clag 2,
PFB0935w, PFB0940w, and PFB0945w fragments and
the regions between them [24,27]. While the subse-
quence is relatively short (�5 kb) relative to the
length of the sequences being searched (�1 Mb), the
method detects the repeat quite readily, since its length
and fidelity allow it to stand out above the back-
ground.

3.2. Different classes of repeat patterns

Regions with low information content point to areas
that may contain patterns of interest. Starting at the 5�
end of chromosome 2, a number of low information
content regions seen in Fig. 2a were examined further.
The two-dimensional plot shows the location of subse-
quences that are likely to have contributed to the
compression of the sequence. ‘Zooming in’ on chro-
mosome 2, the telomeric and subtelomeric region at
0–100 kb (overall compressibility �1.4 bits per nucle-
otide) was examined further. Fig. 3 shows a two-di-
mensional plot of this region, with the sequence
running from left to right, 5�–3�, on the x-axis, and
from top to bottom (5�–3�) on the y-axis. The main
diagonal shows the contribution of the base model
(here, first order Markov model). Lines off the main
diagonal show approximate repeats, parallel to the
main diagonal when in the same orientation, perpen-
dicular to the main diagonal when reverse complemen-
tary. The positions of repeats can be found by
extending a horizontal line through the internal diago-
nal, dropping perpendiculars to the x-axis from the
line’s intersection with any internal diagonals and with
the main diagonal, and reading the positions on the
x-axis. Horizontal and vertical discontinuities within a
diagonal indicate deletions in the repeat region. Dis-
continuities that do not alter the alignment of the
diagonal represent regions within a repeat that are
either unrelated or more weakly related to each other
than the rest of the repeat. Numerous short diagonals
close together indicate a number of short approximate
repeats close together in the sequence.

Several regions of low information content at the 5�
end of chromosome 2 are outlined in Fig. 3. The low
information areas fall into two distinct classes. Dark
spots and areas with many short diagonals, e.g. in the
region 0–23 kb (upper left quadrant), indicate areas of
low complexity, in this case correlating with known
repetitive areas in the telomeric region of chromosome
2, or ‘telomere associated repetitive elements (TAREs)’
[28]. Another region of low complexity, at 90–95 kb,
is located in the gene PFB0095c, which encodes the
erythrocyte membrance protein PfEMP3, and can be
ascribed to the 15 amino acid repeat in the gene
product [26]. In between these two areas of low com-
plexity, at 30–70 kb, is a relatively large subtelomeric
region marked by numerous long repeats that appear
as diagonal lines, which we examined in more detail.

3.3. Subtelomeric repeats

In order to examine further the repeats in both the
5� and 3� subtelomeric regions of chromosome 2, 40 kb
from each end of the chromosome was extracted, and
the subsequences were concatenated. A plot obtained
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Fig. 2. Plots of information content (bits per nucleotide) across P. falciparum chromosomes: (a) chromosome 2; (b) chromosome 3; and (c)
chromosome 3 in the context of chromosome 2. Nucleotide position is shown on the x-axis, average information content across a window of 1000
nucleotides centered on this nucleotide on the y-axis. The minimum hash-hit word length was 16 nucleotides.

from the concatenated sequences (Fig. 4) shows repeats
in the 5� and in the 3� region in the context of the 5�
region. A horizontal line separates the 5� (30–70 kb)
and 3� (880–920 kb) regions. The abundance of internal
diagonals in the figure indicate that the two regions
contain numerous approximate repeats. The degree of

relatedness of various subsequences within this sub-
telomeric region is indicated by the intensity and conti-
nuity of the diagonals. The positions of repeat units, as
determined by more detailed analysis, are shown along
the main diagonal by half boxes. The lines in the lower
left quadrant of the figure, representing subsequences in
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Fig. 2. (Continued)

the 5� region that are repeated in the 3� region, are
perpendicular to the main diagonal, indicating that the
repeats at the two ends of the chromosome are in
reverse complementary orientation to each other.

Some of the repeats observed in Fig. 4 can be ac-
counted for by known genes in the subtelomeric re-
gions, such as repeated copies of the �1.5 kb rif gene
[25,24], and the longer �ar gene which encodes PfEMP1
[29,30]. The �ar genes PFB0010w and PFB1055c make
only a small contribution to the observed repeats, be-
cause they are mostly outside of the region under
observation. The relationship between the last exons of
these two �ar genes is shown by the short diagonal line
in the lower left quadrant of the Fig. 4, representing a
repeat near the two ends of the concatenated sequence,
while the rest of these genes lie outside the region.

While rif genes contribute to the repeats observed,
the pattern of repeats cannot be totally explained by rif
and �ar genes in the subtelomeric region. The longer
diagonals in Fig. 4 represent sequences of 9–10 kb that
are repeated (approximately) as a unit. This unit in-
cludes rif genes, but is considerably longer. The repeat
unit, in fact, is spanned by two rif genes, and includes
a considerable non-coding region between them, along
with �ar fragments. There are three instances of this
repeat unit on chromosome 2: (1) 5�–most repeat
spanned by rif genes PFB0015c and PFB0025, includ-
ing �ar fragment PFB0020c and non-coding regions
between genes; (2) nearby repeat unit spanned by rif
gene PFG0040c and rif pseudogene PFB0050c, includ-

ing �ar fragment PFB0045c and associated non-coding
regions (internal diagonal, upper left quadrant); and (3)
reverse complement repeat unit at the 3� end of the
chromosome spanned by rif genes PFB1020w and
PFB1035w, including the two �ar fragments PFB1025w
and PFB1030w and non-coding sequences (internal di-
agonal, lower left quadrant). This multi-gene repeat
unit corresponds to the canonical repeat unit we re-
ported previously [31]. We can further infer from the

Fig. 3. Two-dimensional plot of 0–100 kb at the 5� end of chromo-
some 2. Regions of low complexity and repeats are outlined.
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Fig. 4. Two-dimensional plot of subtelomeric regions of chromosome
2. The regions 30–70 and 880–920 kb are shown. Basic repeat units
are outlined. The thicker horizontal line delineates between the 5� and
the 3� region.

diagonals, than others (see for example Fig. 4 and Fig.
5). The ability to differentiate among repeats based on
their length and overall fidelity is another advantage of
our method over traditional dot matrix plots, where all
subsequences that match above the threshold within a
fixed-sized window appear the same; the unique ability
of our model to take into account background compo-
sition is particularly useful in sequences of low com-
plexity. A more quantitative measure of the degree of
similarity between two sequences can be obtained from
the normalised compressibility of one sequence in the
context of another, relative to the compressibility in the
absence of any context. Such analysis can show, for
example whether the most closely related telomeric
duplication event at the 5� end of a chromosome is to
its 3� end or to another chromosome, and may provide
a phylogeny of development of repeated genes such as
�ar and rif sequences. It will be of interest to see if a
genomic phylogeny derived using this method matches
the relatedness of the coding genes themselves.

3.4. Repeat patterns in coding and non-coding regions

Localised dips in information content were noted at
approximately 450 kb in chromosome 2 and approxi-
mately 600 kb in chromosome 3 (Fig. 2a and b), and
correlate with the putative centromeres reported in [25].
While these centromeres are readily detected on a plot
of G+C content, it is notable that they are observed
here on the same scan that detects repeat units. When
the sequencing of the P. falciparum genome is further
advanced, it will be interesting to see whether our
method suggests a lineage among centromeric regions
on different chromosomes.

relative brightness of the diagonal lines that repeat (3)
is more closely related to repeat (2) than it is to repeat
(1).

The pattern seen strongly suggests a single duplica-
tion event copied a �10 kb length of DNA, containing
multiple genes and substantial amount of non-coding
sequence, and that this region was duplicated twice on
chromosome 2 (plus one original length of DNA).
Shorter internal diagonals that are vertically aligned
with the ends of the long diagonals represent the rela-
tionships among the rif genes within the 10 kb segment
and other rif genes. The rif genes flanking the repeat
unit are not as closely related to each other as they are
to other rif genes, hence overlapping diagonals are not
observed within the 10 kb unit.

The analogous subtelomeric region on chromosome
3, 30–70 kb and 1010–1040 kb, also shows repeats and
a relationship between the two ends (Fig. 5). In chro-
mosome 3, the long diagonal in the lower left of the
figure indicates that a long region �28 kb of the 5�
region was copied into the 3� region in a single event, or
vice versa, with subsequent mutation. This region in-
cludes multiple rif genes, which of course would have
arisen from previous duplication events, a �ar gene, a
ste�or gene, and substantial non-coding material. Thus,
while not originally designed for such purposes, our
method has a potential usefulness in unravelling the
sequence of events that lead to a region of repeats, over
and above simply locating the repeats.

Remembering that intensity on the two-dimensional
plot is a measure of the probability that one subse-
quence has contributed to another, it is also apparent in
the two-dimensional plots that some repeat regions are
more closely related to each other, shown by stronger

Fig. 5. Two-dimensional plot of subtelomeric regions of chromosome
3, showing the regions 30–70 and 1010–1040 kb. The thicker hori-
zontal line delineates between the 5� and the 3� region.
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Fig. 6. Serine erythrocyte-binding antigen (SERA) cluster on chromosome 2. The region 290–330 kb, encompassing the SERA genes
PFB0325c–PFB0370c is shown: (a) using our statistical model; (b) using our statistical model, with exon 4 of PFB0345c appended; and (c) using
the Dotter dot-matrix plotter, with sliding window length 50 and grey ramp range 90–150. The grid in (a) shows similarities between different
subsequences; the positions of related subsequences can be read from the x-axis. Weak and missing diagonals represent more weakly related
sequences. In (b) the circled diagonal shows the last exon of PFB0345c.

A region around 300 kb in chromosome 2 in which
the information content dropped to approximately 1.2
bits per nucleotide was also noted (Fig. 2a). This loca-
tion corresponds to the cluster of serine erythrocyte-
binding repeat antigen (SERA) genes (PFB0325c,
PFB0330c, PFB0335c, PFB0340c, PFB0345c,
PFB0350c, PFB0355c, PFB0360c) which lie in this re-
gion of chromosome 2 [24,32]. ‘Zooming in’ on the
region, our method showed a pattern in which a �1 kb
segment of DNA is repeated, approximately, at regular
intervals (Fig. 6a). Variations in the fidelity of the
repeat are seen in a qualitative way, with the more

closely related sequences showing as stronger lines and
the more weakly related sequences as broken lines.
Occasionally the relationship between two repeats is so
subtle that it is not detected directly at the degree of
resolution achieved in the plot, but is inferred transi-
tively, through a relationship in common with a third
subsequence. The strongest relationships among se-
quences are shown in the grid pattern superimposed on
the program output in Fig. 6a; some of the weaker
relationships can be deduced from transitivity. Identifi-
cation of the strong repeat as exon 4 of the SERA gene
was confirmed by post-pending the exon 4 of PFB0345c
to the region and rescanning (Fig. 6b).
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We compared the utility of our method for finding
repeats with the utility of two well-established tech-
niques. Using BLASTN [33] to search for matches to
last exon of PFB0345c, the regular repeat pattern in
the SERA genes was not as readily apparent as it
was with our method. The repeats were also evident
using the advanced dot matrix plotter Dotter [34].
The Dotter plot of this region (Fig. 6c) also shows
considerable background noise due to the biased nu-
cleotide composition of the chromosome; in our
method the biased nucleotide composition was cor-
rectly handled by the base model, and did not appear
as a repeat. In our model the variations in the degree
of relatedness among multiple subsequences can be
inferred from the relative brightness of the diagonal
lines; this takes into account the background charac-
teristics of the sequence.

We also examined preliminary sequence from chro-
mosome 10, using contigs obtained from The Institute
for Genomic Research website (www.tigr.org). Contig
c10m304 from this source proved to be very com-
pressible using the approximate repeat model, giving
an overall compression of 0.607 bits per nucleotide
over its length of 24 kb, considerably better than the
best compression achieved using Markov models of
different orders without modelling the approximate
repeats explicitly. The best compression without re-
peat modelling was achieved using a sixth-order
Markov model, and was 0.820 bits per nucleotide.
Compression of the biased sequence c10m304 (38.7%
A) using a zero-order Markov model gave 1.846 bits
per nucleotide.

There are numerous short approximate repeats in
c10m304 and many strings of A’s. Using the approxi-
mate repeat model, a subsequence of approximately
600 nucleotides in length stood out as unusual over
and above the numerous smaller repeats. This long
repeat unit appears once at around 3000 nucleotides
into the contig, and again at around 20000 nucle-
otides (Fig. 7a). This repeat was not as readily de-
tectable using the Dotter dot matrix plotter, due to
the noisy background of small-period repeats and the
biased nucleotide composition (Fig. 7b).

3.5. Ad�antages of the statistical model

We have applied a statistical model [15,16] to the
task of looking for approximate repeats in P. falci-
parum genomic sequences. The model is very general,
using only the most minimal biological knowledge,
i.e. that regions of DNA can be repeated, in a for-
ward or inverted (reverse complement) direction, and
that mutations, deletions, and insertions can occur.
Because the model does not rely on prior information
about the genome, it can find new motifs, and can
find repeat sequences of different classes at the same

time. It can also use information about sequences, for
example, by prepending or appending known se-
quences of interest to the sequence under exploration,
and searching for repetitions of the known sequence.

Another strength of the current model is that it can
detect weakly related sequence repetitions, and can
differentiate repeats of different degrees of fidelity
from each other, both visually and numerically. The

Fig. 7. Contig c10m304 from P. falciparum chromosome 10: (a)
Two-dimensional plot using the statistical model. The circle encloses
the 600 bp repeat at positions 3000 and 20000 from the 5� end of the
contig; (b) Dot-matrix plot generated using the Dotter program, with
sliding window length 37 and grey ramp range 150–190.

www.tigr.org
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use of probabilities, rather than a threshhold, is a key
factor in differentiating among multiple repeats of dif-
ferent strengths, and can allow us to suggest likely gene
duplication events. It would be interesting to extend
this analysis to examine the degree of relatedness be-
tween entire genomes, to examine whether the conven-
tional phylogenetic relationships deduced from
examination of the sequences of particular genes holds
true for the genome as a whole [35,36].

Other important properties of the method include its
separate modelling of the base and repeat states, which
allows significant motifs to emerge above a noisy back-
ground. Degrees of relationship between the sequences
are revealed by examination at various threshold set-
tings, and depending on the specific sequences that are
examined. Regions of interest may include entire genes
or only portions of genes. For example, when chromo-
some 2 is compared to itself, in addition to the regions
around the telomere, a segment at positions 538000–
539000 is highlighted. This corresponds to the exon 2
and surrounding introns of PFB0595c, a protein con-
taining a putative DnaJ domain. Other proteins with
DnaJ-like domains include PFB0085c, PFB0090c,
PFB0920w, PFB0925w. Some of these also contain
RESA-like sequences. The inclusion of the introns
within this region suggests the possibility of a modular
insertion of a functional region into multiple genes.
Similarly, an examination of chromosome 2 against
itself after comparison to chromosome 3 identifies the
central region of PFB0695c (position 629000–630000),
an ATP-dependent acyl-CoA synthetase as having a
region of interest. This can be matched to a similar
gene on chromosome 3, MAL3P8–AL034560 (position
66265–68586), which was annotated as a hypothetical
gene originally, but would now appear to be an acyl
CoA synthetase. Interestingly, this protein is quite simi-
lar to the octapeptide repeat antigen (ORA), which was
originally described as an antigen commonly and
strongly recognized by immune sera [37]. Other regions
clearly highlighted include the clag genes on chromo-
some 3 which are related to a gene on chromosome 2
[38].

The model is an information theoretic abstraction of
very general biological knowledge and is applicable to
organisms other than P. falciparum. The generality of
the model makes it useful as a pointer to new motifs, as
well as a tool for locating known motifs and non-motif
repeats.

The current implementation is a prototype lacking a
convenient user interface; a new and generalised imple-
mentation of the model with an improved interface is
under development and will be made available on the
web. Requests for a Linux binary of the prototype
should be made to the authors.

Acknowledgements

We would like to thank Tim Edgoose for implement-
ing the compression algorithm, partially supported by
Australian Research Council grant A9800558. We are
grateful to Robert Huestis for turning our attention to
interesting sequences in chromosome 10 and for many
useful discussions.

Dot matrix plots were generated using the Dotter
program of Sonnhammer and Durbin [34]. BLASTN
searches were performed using the service provided by
the National Center for Biotechnology Information,
National Library of Medicine, National Institutes of
Health (USA).

We wish to thank the scientists and funding agencies
comprising the International Malaria Genome Project
for making sequence data from the genome of P.
falciparum (3D7) public prior to publication of the
completed sequence. A consortium composed of The
Institute for Genome Research, along with the Naval
Medical Research Center (USA), sequenced chromo-
somes 2, 10, 11 and 14, with support from NIAID/
NIH, the Burroughs Wellcome Fund, and the
Department of Defense.

Sequences for P. falciparum chromosomes 2 and 3
were obtained from the National Center for Biotech-
nology Information (www.ncbi.nlm.nih.gov), National
Library of Medicine, National Institutes of Health
(USA). Preliminary sequence data for P. falciparum
chromosomes 10 was obtained from The Institute for
Genomic Research website (www.tigr.org). Sequencing
of chromosomes 10 and 11 was part of the Interna-
tional Malaria Genome Sequencing Project and was
supported by award from the National Institute of
Allergy and Infectious Diseases, National Institutes of
Health (USA).

RLC is supported by the Howard Hughes Medical
Institute International Scholars in Infectious Diseases
and Parasitology Program, the Burroughs Wellcome
Fund and the Australian National Health and Medical
Research Council.

References

[1] Wootton JC. Simple sequences of protein and DNA. In: Bishop
MJ, Rawlings CJ, editors. DNA and Protein Sequence Analysis,
a Practical Approach. Oxford; New York: IRL Press at Oxford
University Press, 1997:169–83.

[2] Fickett JW. Finding genes by computer: the state of the art.
Trends Genet 1996;12:316–20.

[3] Yermanian E. The physics of DNA and the annotation of the
Plasmodium falciparum genome. Gene 2000;255:151–68.

[4] Wootton JC, Federhen S. Statistics of local complexity in amino
acid sequences and sequence databases. Comput Chem
1993;17:149–63.

[5] Shannon CE. The Mathematical Theory of Communication.
Champaign, Illinois: University of Illinois Press, 1949.

www.ncbi.nlm.nih.gov
www.tigr.org


L. Stern et al. / Molecular & Biochemical Parasitology 118 (2001) 175–186186

[6] Langdon GG. An introduction to arithmetic coding. IBM J Res
Dev 1984;28:135–49.

[7] Wootton JC, Federhen S, Analysis of compositionally biased
regions in sequence databases. In: Doolittle RF, editor. Methods
in Enzymology 1996; 266: 554–71.

[8] Wootton JC. Non-globular domains in protein sequences: auto-
mated segmentation using complexity measure. Comput Chem
1994;18:269–85.

[9] Pizzi E, Frontali C. Low-complexity regions in Plasmodium
falciparum proteins. Genome Res 2001;11:218–29.

[10] Wan H, Wootton JC. A global compositional complexity mea-
sure for biological sequences: AT-rich and GC-rich genomes
encode less complex proteins. Comput Chem 2000;24:71–94.

[11] Agarawal P, States DJ. The repeat pattern toolkit (RPT): ana-
lyzing the structure and evoluation of the C. elegans genome. In:
Altman R, Brutlag D, Karp P, et al., editors. Proceedings of the
Second Conference on Intelligent Systems in Molecular Biology.
Menlo Park: AAAI Press, 1994:1–9.

[12] Grumbach S, Tahi F. A new challenge for compression al-
gorithms: genetic sequences. Inf Processing Manag 1994;30:875–
86.

[13] Loewenstern DM, Yianilos PN. Significantly lower entropy esti-
mates for natural DNA sequences. In: Storer JA, Cohn M,
editors. Proceedings of the IEEE Data Compression Conference,
DCC97. Piscataway: IEEE Press, 1997:151–60.

[14] Rivals E, Dauchet M. Fast discerning repeats in DNA sequences
with a compression algorithm. In: Proceedings of the Genome
Informatics Workshop. Tokyo: Universal Academy Press,
1997:215–26.

[15] Allison L, Edgoose T, Dix T. Compression of strings with
approximate repeats. In: Glasgow J, Littlejohn T, Major F, et
al., editors. Proceedings of the Sixth International Conference on
Intelligent Systems for Molecular Biology. Menlo Park: AAAI
Press, 1998:8–16.

[16] Allison L, Stern L, Edgoose T, Dix TI. Sequence complexity for
biological sequence analysis. Comput Chem 2000;24:43–55.

[17] Ziv J, Lempel A. A universal algorithm for sequential data
compression. IEEE Trans Inf Theory 1977;IT-23:337–43.

[18] Dempster AP, Laird NM, Rubin DB. Maximum likelihood from
incomplete data via the EM algorithm. J Roy Stat Soc B
1977;39:1–38.

[19] Baum LE, Eagon JE. An inequality with applications to statisti-
cal estimation for probabilistic functions of Markov processes
and to a model of ecology. Bull AMS 1967;73:360–3.

[20] Baum LE, Petrie T, Soules G, Weiss N. A maximization tech-
nique occurring in the statistical analysis of probabilistic func-
tions of Markov chains. Ann Math Stat 1970;41:164–71.

[21] Yee CN, Allison L. Reconstruction of strings past. Comp Appl
Biosci 1993;9:1–7.

[22] Allison L, Wallace CS, Yee CN. Finite-state models in the
alignment of macro-molecules. J Mol Evol 1992;35:77–89.

[23] Kurtz S, Ohlebush E, Schleiermacher C, et al. Computation and
visualization of degenerate repeats in complete genomes. In:

Bourne P, Gribskov K, Altman R, et al., editors. Proceedings of
the Eighth International Conference on Intelligent Systems for
Molecular Biology. Menlo Park: AAAI Press, 2000:228–38.

[24] Gardner MJ, Tattelin H, Carucci DJ, et al. Chromosome 2
Sequence of the Human Malaria Parasite Plasmodium falci-
parum. Science 1998;282:1126–32.

[25] Bowman SD, Lawson D, Basham D, et al. The complete nucle-
otide sequence of chromosome 3 of Plasmodium falciparum.
Nature 1999;400:532–8.

[26] Pasloske BL, Baruch CI, van Schravendijk MR, et al. Cloning
and characterization of a Plasmodium falciparum gene encoding
a novel high-molecular weight host membrane-associated protein
PfEMP3. Mol Biochem Parasitol 1993;59:59–72.

[27] Huestis R, Cloonan N, Tchavtchitch M, Saul A. An algorithm
to predict 3� intron splice sites in Plasmodium falciparum genomic
sequences. Mol Biochem Parasitol 2001;112:71–7.

[28] Figueiredo LM, Pirritt LA, Scherf A. Genomic organisation and
chromatin structure of Plasmodium falciparum chromosome
ends. Mol Biochem Parasitol 2000;106:169–74.

[29] Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of
Plasmodium falciparum var genes correlate with changes in anti-
genic and cytoadherent phenotypes of infested erythrocytes. Cell
1995;82:101–10.

[30] Baruch DI, Pasloske BL, Singh HB, et al. Cloning the P.
falciparum gene encoding PfEMP1, a malarial variant antigen
and adherence receptor on the surface of parasitized human
erythrocytes. Cell 1995;82:77–87.

[31] Stern L, Allison L, Coppel RL, Dix TI, Information Theoretic
Analysis of Plasmodium falciparum Genomic DNA. The Univer-
sity of Melbourne Technical Report 1998; 1998/7.

[32] Bzik DJ, Li WB, Horii T, Inselburg J. Amino acid sequence of
the serine-repeat antigen (SERA) of Plasmodium falciparum de-
termined from cloned cDNA. Mol Biochem Parasitol
1988;30:279–88.

[33] Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST
and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 1997;25:3389–402.

[34] Sonnhammer ELL, Durbin R. A dot-matrix program with dy-
namic threshold control suited for genomic DNA and protein
sequence analysis. Gene 1995;167:GC1–GC10.

[35] Escalante AA, Ayala FJ. Evolutionary origin of Plasmodium and
other apicomplexa based on rRNA genes. Proc Natl Acad Sci
USA 1995;92:5793–7.

[36] Rich SM, Light MC, Hudson RR, Ayala FJ. Malaria’s eve-evi-
dence of a recent population bottleneck throughout the world
populations of Plasmodium falciparum. Proc Natl Acad Sci USA
1998;95:4425–30.

[37] Favaloro JM, Marshall VM, Crewther PE, et al. cDNA se-
quence predicting an octapeptide-repeat antigen of Plasmodium
falciparum. Mol Biochem Parasitol 1989;32:297–9.

[38] Holt DC, Gardiner DL, Thomas EA, et al. The cytoadherence
linked asexual gene family of Plasmodium falciparum : are there
roles other than cytoadherence? Int J Parasitol 1999;29:939–44.


	Discovering patterns in Plasmodium falciparum genomic DNA
	Introduction
	Methods
	A statistical model for DNA sequences
	Implementation of the statistical model

	Results and discussion
	Compressibility across P. falciparum chromosomes
	Different classes of repeat patterns
	Subtelomeric repeats
	Repeat patterns in coding and non-coding regions
	Advantages of the statistical model

	Acknowledgements
	References


