Types and Classes of Machine Learning and Data Mining

Lloyd Allison

School of Computer Science and Software Engineering
Monash University,
Clayton, Victoria, Australia 3168.
lloyd@bruce.cs.monash.edu.au
http://wuw.csse.monash.edu.au/~1loyd/

Abstract

The notion of a statistical model, as inferred and used in statis-
tics, machine learning and data mining, is examined from a se-
mantic point of view. Data types and type-classes for models
are developed that allow models to be manipulated in a type-
safe yet flexible way. The programming language Haskell-98,
with its system of polymorphic types and type-classes, is used
as the meta-language for this exercise so one of the by-products
is a running program.

Keywords: Classes, data mining, data types, func-
tional programming, inductive inference, machine
learning.

“... considered as a biological phenomenon, aesthetic

preferences stem from a predisposition among ani-
mals and men to seek out experiences through which
they may learn to classify the objects in the world
about them. Beautiful ‘structures’ in nature or in art
are those which facilitate the task of classification by
presenting evidence of the ‘taxonomic’ relations be-
tween things in a way which is informative and easy
to grasp.” (Humphrey 1972 p432).

1 Introduction

Artificial intelligence, machine learning, data mining,
and of course statistics, are to a greater or lesser ex-
tent concerned with probability distributions, statis-
tical models, model classes, hypotheses and theories.
Common activities are fitting model parameters to
data, inferring models from data, selecting a model
class, and comparing models.

In this paper, types and classes (in the program-
ming language sense) are developed to describe, for
want of a name, statistical models where statistical
model is taken to include all of: Probability distribu-
tion, model, model class, hypothesis and theory. The
primary aim is to make precise the behaviour of statis-
tical models by defining types, classes and the opera-
tions on instances of them, thus allowing models to be
combined in flexible ways while allowing these com-
binations to be rigorously checked for validity. This
can be viewed as a first small step towards a seman-
tics of statistical models, as denotational semantics
(Milne & Strachey 1976) provided for programming
languages.

As the formal study of syntax led to good nota-
tion for syntax (BNF), tools to process syntax defi-
nitions (e.g. parser generators), and better syntax for

Copyright ©2003, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-Fifth Australasian Computer Sci-
ence Conference (ACSC2003), Adelaide, Australia. Conferences
in Research and Practice in Information Technology, Vol. 16.
Michael Oudshoorn, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

programming languages, it is hoped that the present
study will have beneficial effects on the definition and
use of statistical models with computers.

General inspiration is taken from the field of func-
tional programming (FP) which achieves conciseness
and generality from treating functions as first-class
values and all that follows. It is hoped that treat-
ing statistical models as first-class values will bring
similar benefits to machine learning and data mining.
This has already been useful in special cases (Allison
et al. 1999) and we want to see how far the idea can
be taken. Another aim of the exercise is to provide a
rapid prototype for parts of a data mining platform,
CDMS, being developed locally.

Much research in machine learning and data min-
ing consists of developing a new algorithm to infer a
specific kind of statistical model for a certain range of
problem, e.g. mixture models for unsupervised clas-
sification (clustering) of multivariate data, or classifi-
cation trees (also known as decision trees) for super-
vised classification, and so on. In contrast, here we
are mainly concerned with questions such as “what is
the behaviour of classification functions in general?”,
classification trees being just one implementation of
such functions. The former kind of activity typically
leads to stand-alone programs that must use shell-
scripts and intermediate files if they are to cooperate
on data exchange, and that can hardly be used as
building blocks in any sophisticated way. There are
some more general data-mining platforms, such as R
(see (CRAN 2002)), S-Plus (Venables & Ripley 1999)
and Weka (Witten & Frank 2000), which allow data
analysis techniques to cooperate and which support
the addition of new techniques, but any typing is typi-
cally ad-hoc and dynamic, compromising speed, type-
safety or generality, or all of these. Here in contrast,
polymorphic types and operations (Strachey 1967)
are developed for statistical models; many operations
on models are naturally polymorphic.

2 FP: Haskell, Types and Classes

Haskell (Hudak et al 1992), specifically Haskell-98
(Peyton Jones et al. 1999), is used here as the pro-
gramming language, i.e. the meta-language, to de-
scribe the types and classes of statistical models.
Haskell is a pure functional programming (FP) lan-
guage having a polymorphic type system (Milner
1978) of the general kind first implemented in Stan-
dard ML (SML). The most important feature is that
a structured data type can take type variables as
parameters. For example, [t], that is List of t,
represents the List type over any element type, t.
The type variable, t, can be instantiated in many
ways, hence polymorphic, e.g. ["MML", "FP"]

[String], and [factorial, fibonacci] [Int
— Int], where “::” denotes “has the type”, and
“—” denotes a function type. “\” stands for lambda,

as in the lambda-calculus (Church 1941), and can,
with —, be used to define anonymous functions such
as the successor function, (\n—n+1).

Haskell has a system of type classes. A type class
is defined by the values and operations (functions)
associated with it — resembling a Java interface. A
data type can be an instance of, i.e. can belong to,
one or more type classes. For example, List is an
instance of the classes Show, that is printable things,
and Functor.

Haskell also has a type inference algorithm which
automatically infers the most general types of most
expressions in a program without the programmer
having to explicitly give types. Type systems of this
kind have most of the advantages of both dynamically
and statically typed languages.

Finally, Haskell is a lazy functional language; a
value is only evaluated when (if) it is needed. Laziness
allows infinite structures to be defined, provided that
only finite parts are evaluated, and simplifies many
definitions.

3 (Basic) Models

The terms model and statistical model appear in
many varied, flexible, creative and even contradic-
tory ways in everyday usage depending on the con-
text. We cannot hope to match this flexibility in pro-
gramming which must necessarily be more restricted
on one hand and more precise on the other. This sec-
tion examines the most basic kind of statistical mod-
els including, but not limited to common probability
distributions.

The most basic operation that (many) models sup-
port is assigning a probability to a datum from the
model’s data space, i.e.

class Model mdl where
pr :: (mdl dataSpace) -> dataSpace
-> Probability

The Haskell code above specifies that a data type,
mdl, is in the class Model (i.e. is a Model) if md1 has a
type parameter, dataSpace, and if an operator, pr, is
defined which takes a value of type (md1 dataSpace)
and a datum of type dataSpace and produces a prob-
ability.

In order to create some instances of Models, one or
more data types must be defined to implement them.
For example, a value of a suitable ModelType is spec-
ified by a constructor, MPr, which takes two param-
eters. The first parameter is the message length (a
measure of complexity) of the Model itself; message
lengths are discussed in the next section. The second
parameter is the likelihood function which returns the
probability of a datum given the Model.

data ModelType dataSpace =
MPr MessagelLength
(dataSpace -> Probability) |
other alternatives

Another constructor for ModelType is introduced
later in Section 3.2. ModelType is made an instance
of class Model by defining the necessary functions, in
this case use the likelihood function to calculate a
probability:

instance Model ModelType where
pr (MPr ml p) datum = p datum

Thus if n01 :: ModelType Float is defined to be
(normal 0 1), that is a normal Model (distribution)

with mean 0 and standard deviation 1 then pr n01
0 = 0.399. It is natural to write “n01 is a Model of
Float” although it is more correct to write “n01 has
the data type (ModelType Float) and the data type
ModelType is in the class Model”.

3.1 MMLFP = MML + FP

Overfitting is a well known problem in inductive in-
ference. A more complex model (e.g. a cubic polyno-
mial) tends to fit training data better than a simpler
model (e.g. a quadratic) but this may not generalize
to test data. Various ways of taking the complex-
ity of a model into account have been proposed as a
cure for overfitting. The author’s inclination is to use
minimum message length (MML) inference (Wallace
& Boulton 1968, Wallace & Freeman 1987). Just as
the use of Haskell is well motivated but in princi-
ple arbitrary, the adoption of the particular frame-
work, MML, is not central to the theme of this pa-
per, although it does fit in rather well, and the work
has been done in that framework so it is briefly in-
troduced here. Oliver and Baxter (1994) discuss at
length MML’s relationship to alternative frameworks.

The MML criterion is to use the length of a two-
part message to select between competing hypotheses
(distributions, models, theories). It relies on Bayes
theorem (Bayes 1763), that for a hypothesis H and
data D

pr(H & D) = pr(H).pr(D|H)
= pr(D) .pr(H|D)

and on Shannon’s mathematical theory of communi-
cation (1948), which gives the message length, msg,
in an optimal code for an event E of probability pr(E)

msg(E) = - log(pr(E))
Hence
msg(H & D) = msg(H) + msg(D|H)

msg (D) + msg(HID)

In many problems pr(D) is unknown, but it is usu-
ally possible to give a reasonable estimate for the
prior, p(H), and the likelihood, pr(D|H), and hence
their negative logs.

The first part of the message, msg(H), describes
an instance of a hypothesis, including any parame-
ters stated to optimum accuracy; it corresponds to a
header in terms of file compression. The second part
of the message, msg(D|H), states the data given the
hypothesis. The difference between message lengths
under two hypotheses gives the posterior negative log
odds ratio of the hypotheses.

MML is invariant under monotonic transforma-
tions of parameters and is consistent. Although strict
MML (SMML) inference is NP-hard for most inter-
esting model-spaces (Farr & Wallace 2002), efficient
MML approximations and inference algorithms ex-
ist (Wallace and Freeman 1987) for many important
practical problems.

MML is well suited to the composition of statis-
tical models (as are some but not all other criteria)
because the information content of data, model and
submodels are all measured in the same units: “[It is
possible] to use [message] length to select among com-
peting sub-theories at some low level of abstraction,
which in turn can form the basis (i.e., the ‘data’) for
theories at a higher level of abstraction. There is no
guarantee that such an approach will lead to the best
global theory, but it is reasonable to expect in most
natural domains that the resulting global theory will
at least be near-optimal.” (Wallace & Georgeff 1983).

The prior probabilities of complex models and the
likelihoods of large data values are typically very

small, perhaps small enough to cause underflow. As a
practical matter, so that the resulting programs can
run on non-trivial data, it is often better to work with
negative log probabilities — message lengths — rather
than probabilities themselves. Class Model is revised:

class Model mdl where
pr :: (mdl dataSpace) -> dataSpace
-> Probability

msg2 :: (mdl dataSpace) -> dataSpace
-> MessagelLength
msg :: (mdl dataSpace) -> dataSpace

-> MessagelLength

msg md = (msgl m) + (msg2 m 4)

The name msg?2 is used to indicate the second part of
the two-part message, the part for a datum given the
Model. The first part of the message, msg1, is defined
later in Section 6. The total message length, msg, for
Model and data, is the sum of the parts.

Message lengths can be combined, without con-
version to probabilities, by using logPlus which is
equivalent to

logPlus msgl msg2 =
let (bigger, smaller)
= if msgl >= msg2
then (msgl, msg2)
else (msg2, msgl)
diff = bigger - smaller
eps = 2 **x (-diff)
in if diff > numSignificantBits
then smaller
else smaller - (logBase 2 (l+eps))
-- NB. logPlus m m == m-1

3.2 Some Models and Operations

It is now possible to define normal, the function which
given a mean and a standard deviation produces a
fully-parameterized normal Model (probability distri-
bution). Here this happens to be done using the sec-
ond constructor, MMsg, of ModelType. MMsg takes the
message length (complexity) of the Model and the
function for the negative log likelihood, i.e. the mes-
sage length of a datum given the Model:

data ModelType dataSpace =
MPr ...as before... |
MMsg MessageLength
(dataSpace -> MessageLength)

normal m s =
let constPart
= (log(2 * pi)) / 2 + (log s)
nll x = (constPart
+ (((x-m)/s)*%2)/2) / log 2
in MMsg 0 nll -- Model of Float

The Model’s complexity is zero in this case because
the parameters are taken to be constants, common
knowledge. A Model of Float produces a probabil-
ity density rather than a probability as such but we
can ignore the distinction because the measurement-
accuracy of the data passes through the MML calcu-
lations under reasonable conditions.

A list of probabilities can be used to form a Model
of Int:

probs2model ps =
MPr 0 (\n -> ps !! n)

(The operator !'! selects the nth element of a List.)
For example,

fairDice =
probs2model [1/6,1/6,1/6,1/6,1/6,1/6]

is the Model of rolls for a fair, computer-science dice,
0..5.

A list of frequencies can also be used to form a
Model of Int:

fregs2model fs =
let total = foldl (+) O fs
partl = ...
pn=...
in MPr partl p

Note that foldl (+) 0 calculates the sum of a list.
The calculation for the complexity of the Model,
i.e. partl, and the MML estimator, as used in p,
are given in (Wallace and Boulton 1968). The pre-
cise details do not matter here, but the complexity
increases (the uncertainty region for the parameter es-
timates shrinks) as the given frequencies (i) increase,
or (ii) become more biased, or both of the above.

A Model of a discrete, enumerated (Enum),
Bounded data space can be formed from a Model of
the appropriate subrange of Int:

modelInt2model egValue intModel =

let

fromE x = fromEnum(x ‘asTypeOf‘ egValue)
toInt x = (fromE x) - (fromE minBound)

p datum = pr intModel (toInt datum)

in MPr (msgl intModel) p
data Throw = H | T

instance Enum Throw where ...
instance Bounded Throw where ...

fairCoin =
modelInt2model H (probs2model [0.5, 0.5])

Throw is the data type of one throw of a coin and
fairCoinis a Model of Throw. Note that an example
value, H above, is given to inform the type checker of
the type of the data space. (Enum and Bounded are
standard classes in Haskell.)

A Model of a discrete, enumerated, Bounded type
can be inferred given a sample (training data set)
from a data space by counting the frequencies of the
values in the data set:

estMultiState dataSet =
modelInt2model (dataSet !! 0)
(freqs2model (count dataSet))

The values in the data set are counted and their fre-
quencies used to produce a Model of Int. This is
turned into a Model of dataSpace where (dataSet
11 0) is used as the example value from the data
space merely to inform the type inference algorithm.
On a small point, thanks to laziness the example value
need not even exist provided that its type can be in-
ferred as though it does exist.

It is sometimes useful to deal with weighted data
and to have an estimator that works from a data
set together with a corresponding series of weights.
Weights allow a repetitive data set to be compacted.
They are also useful later (Section 7.1) in mixture
modelling.

Given two Models, m1 and m2, a bivariate Model
can be formed:

bivariate (m1, m2) =
let m (d1, d2) = (msg2 ml d1)+(msg2 m2 d2)
in MMsg ((msgl m1) + (msgl m2)) m

Given (weighted) estimator functions for a Model
of dataSpacel and a Model of dataSpace2 an
estimator for a bivariate Model of (dataSpacel,
dataSpace?2) is given by:

estBivariateWeighted (estl, est2)
dataSet weights
= let (dsl, ds2) = unzip dataSet
in bivariate (estl dsl weights,
est2 ds2 weights)

The bivariate data are separated (unzip) and each
column is fed, with the weights in this case, to the
appropriate estimator and finally the bivariate Model
is formed.

Obviously trivariate operations and so on can be
created. It is also straightforward to form similar op-
erations on n-ary Lists of Models of the same dataS-
pace, and their estimators.

4 FunctionModels

The basic Models of Section 3 certainly do not cover
everything that can be meant by “statistical model”.
Each member of another large subset of statistical
models has an input (independent, exogenous) space
(variables, attributes) and an output (dependent, en-
dogenous) space.

A type, fm, is a FunctionModel if there are
functions condModel and condPr defined. Function
condModel, named for conditional Model, maps an
(fm inSpace opSpace) and an inSpace value, ip,
onto a conditional (dependent) Model of opSpace.
Function condPr, named for conditional probability,
when also given an opSpace value, op, returns its
probability, pr(op|ip,fm):

class FunctionModel fm where
condModel :: fm inSpace opSpace
-> inSpace -> ModelType opSpace
condPr :: fm inSpace opSpace
-> inSpace -> opSpace -> Probability
condPr m i o = pr (condModel m i) o

FunctionModelType is a data type that can be
made an instance of FunctionModel class:

data FunctionModelType inSpace opSpace
= FM MessagelLength
(inSpace -> ModelType opSpace)

instance FunctionModel FunctionModelType
where
condModel (FM mdllen f) = f

A value of FunctionModelType is created by the con-
structor, FM, given a message length (i.e. its complex-
ity) and a function that maps from inSpace to Model
of opSpace.

5 TimeSeries

The time series is another important kind of statisti-
cal model. A type, tsm, is in the TimeSeries class if
there are functions predictors and prs. The func-
tion predictors takes a (tsm dataSpace) and a se-
ries (list) of dataSpace and produces a list of predic-
tions for elements in the series. The predictions are
probabilistic so each one is a Model of dataSpace.
Note that the list of predictions is one longer than
the list of dataSpace because the former includes a
prediction for the next element after the end of the
latter list. In addition, function prs produces a list
of probabilities from a data series.

class TimeSeries tsm where
predictors :: (tsm dataSpace)
-> [dataSpace] -> [ModelType dataSpacel
prs :: (tsm dataSpace)
-> [dataSpace] -> [Probability]
msg2s :: (tsm dataSpace)
-> [dataSpace] -> [MessageLength]

prs tsm dataSeries =
map (\(m,d) -> pr m 4)
(zip (predictors tsm dataSeries)
dataSeries)

The default version of prs, above, combines (zip)
predictions and data values and takes the probabili-
ties (pr) of the latter given the former; the last pre-
diction is ignored.

One natural way to define an instance of a statisti-
cal model that is in the TimeSeries class is to give a
message length and a predictor function. The predic-
tor function takes a context of past data values and
produces a Model over the next element.

data TimeSeriesType dataSpace =
TSM MessageLength
([dataSpace] -> ModelType dataSpace)

It is efficient to have the context in reverse order,
from most recent to least recent, because of the way
that the predictor function is scanned along the input
data series when TimeSeriesTypeis made an instance
of TimeSeries.

instance TimeSeries TimeSeriesType where
predictors (TSM mdlLen f) dataSeries =
let
scan [] context = [f context]
scan (d:ds) context
= (f context):(scan ds (d:context))
in scan dataSeries []

Note that “:” is the list constructor and that scan is
defined by cases, on the empty list [] and the non-
empty list d:ds. Cheating on predictions is impossi-
ble because the predictor function, £, is only shown
the previous elements of the series and cannot look
ahead. Note, the first prediction relies on the empty
context, and there is the extra prediction for the ele-
ment that would extend the data series.

Many useful TimeSeries, such as Markov models
of order k, only examine the k most recent values of
the data series and it is convenient to have these first
to hand in the context for that reason also.

6 A Parade of Models

So far (basic) Models, FunctionModels and
TimeSeries have been defined. @ These do not
exhaust the possibilities of statistical models but
they are a good start. There are some properties
shared by these three classes, and others of their
kind. These shared properties naturally belong to
some super class of all statistical models which can
only have one possible name: SuperModel!

The most important property of SuperModel, in
the MML framework, is the message length.

class SuperModel sMdl where
prior :: sMdl -> Probability
msgl :: sMdl -> MessageLength

prior sm = 2 ** (-msgl sm)
msgl sm = - logBase 2 (prior sm)

Any instance of SuperModel must at least define ei-
ther prior or msgl. The name msgl is used to indi-
cate the first-part of a message, i.e. due to the instance
of SuperModel itself.

6.1 On Name Calling

Every program tells a story and it is important that
good words are used to name the values, types and
classes. It could be argued that Model is the natu-
ral name for the super class, but there do not seem
to be any useful pure SuperModels. It seems that
all useful SuperModels have another job — as a (ba-
sic) Model, FunctionModel, TimeSeries or member
of some other subclass to be defined. Thus Model is
too valuable a word to waste on the super class, in
the author’s opinion.

FunctionModel includes regression models as in
polynomial regression etc.. Regression is there-
fore a plausible alternative name for what is called
FunctionModel here, but it is (currently) felt that
regression carries too much other baggage with it to
be used for that purpose.

6.2 Changing Clothes

There are some natural functions (Figure 1) between
classes Model, FunctionModel and TimeSeries.

A Model can be turned into a TimeSeries by ig-
noring the context and producing the same Model for
every element in the data series:

model2timeSeries m =
TSM (msgl m) (\context -> m)

The idea of forcing Model to be a subclass of
TimeSeries has been toyed with but currently it is
optional for an instance of Model to be an instance of
TimeSeries. e.g. For ModelType:

instance TimeSeries ModelType where
predictors m dataSeries
=map (_ -> m)

((error "") : dataSeries)

A Model can also be turned into a FunctionModel
by a similar trick:

model2functionModel m
= FM (msgl m) (\ip -> m)

A TimeSeries of dataSpace can be turned into a
Model of [dataSpace] (note the square brackets for
List):

timeSeries2modell mdlLen tsm =
MMsg (msgl tsm + msgl mdllLen)
(\dataSeries ->
foldl (+)
(msg2 mdllen (length dataSeries))
(msg2s tsm dataSeries))

timeSeries2model tsm =
timeSeries2modell someModelOfInt tsm

i.e. The message length of the data series given the
new Model is the sum of the message lengths of the el-
ements of the data series under the given TimeSeries
plus a term for stating the length of the data series.
Note that the probability of a long sequence, e.g. a
complete chromosome (Stern et al. 2000) would likely
cause underflow, so it is better to work with mes-
sage lengths, msg2s, rather than probabilities. There
is no mathematical difficulty in finding a Model for
the length of a data series, there being many candi-
date probability distributions for non-negative inte-
gers, but the choice of the right one for a particular

Super-
—-Model

Time- ™ Model | Function—

—Series ‘\—// —Model

Figure 1: Classes and Functions.

problem can be surprisingly tricky (e.g. (Allison &
Yee 1990)). On the other hand, the length may even
be common knowledge in some cases and thus free.

We have seen that a Model of dataSpace can be
turned into a TimeSeries of dataSpace and thence
into a Model of [dataSpace]. One might ask, “Is a
Model of dataSpace a Model of [dataSpace]?” and
the answer is almost but formally no. The trans-
formation from the former to the latter is straight-
forward but the distinction is necessary to keep the
types legal, as can be seen by considering, say, an im-
age to be a series of scan-lines, and a scan-line to be
a series of pixels.

A TimeSeries of dataSpace can be turned into
a FunctionModel of [dataSpace] dataSpace by re-
turning the prediction given the whole data series as
context:

timeSeries2functionModel tsm =
FM (msgl tsm)
(\dataSeries ->
last(predictors tsm dataSeries))

A FunctionModel of the right kind, one that em-
bodies a predictor function, i.e. a FunctionModel
of [dataSpace] dataSpace, can be turned into a
TimeSeries of dataSpace:

functionModel2timeSeries fm =
TSM (msgl fm) (condModel fm)

And aFunctionModel of inSpace opSpace can be
turned into a Model of the product space, (inSpace,
opSpace):

functionModel2model fm =
MMsg (msgl fm)
(\(i, o) —> condMsg2 fm i o)

i.e. The input variables (attributes), i, are assumed
to be common knowledge, having zero cost — which is
the case in supervised problems.

As well as these, and other, functions on the vari-
ous kinds of statistical model, there are similar func-
tions on their estimators. Taken together they add to
the generality of the system.

7 Mixtures

A mixture of two or more component Models behaves
as a weighted average of the components. For ex-
ample a 50:50 mixture of a fair coin and a biased
coin is a slightly biased coin. A large family of meth-
ods for unsupervised classification (clustering, numer-
ical taxonomy) infer multivariate mixture Models.
To form a mixture of Models requires a list of K

Models, i.e. a [Model...] of length K, and a list of
K weights or probabilities, i.e. [Probability], that
sum to one. More generally, such a [Probability]
is really a Model of 0. .K-1. If focusing on clustering,
one might be tempted to make the function mixture a
requirement of class Model, mixture :: (mdl Int)
— [mdl dataSpace] — mdl dataSpace, or simi-
lar. But there are also mixtures of FunctionModels
and TimeSeries, collectively SuperModels, so the
definition of the latter is revised:

class SuperModel sMdl where

prior :: sMdl -> Probability
msgl :: sMdl -> MessageLength
mixture ::

(Mixture mx, SuperModel (mx sMdl)) =>
mx sMdl -> sMdl

Note that the text before the “=>" specifies that mx
must be a Mixture and that (mx sMdl) must be
a SuperModel. In that case, mixture takes a (mx
sMd1) and produces a sMdl.

A class, Mixture, and type, MixtureType, are use-
ful. A Mixture must be able to produce a list of
components and a mixer Model controlling them:

class Mixture mx where

mixer : (SuperModel t) =>
mx t -> ModelType Int
components :: (SuperModel t) =>

mx t -> [t]

data (SuperModel elt) =>
MixtureType elt
= Mix (ModelType Int) [elt]

instance Mixture MixtureType where
mixer Mixm _) =m
components (Mix _ es) = es

instance (SuperModel elt) =>
SuperModel (MixtureType elt) where
msgl (Mix m es)
= foldl (+) (msgl m) (map msgl es)

Note that the message length (msgl) of a Mixture
is the sum of that of the mixer Model and of the
component SuperModels.

The mixture of a collection of Models of
dataSpace is itself a Model of dataSpace by adding
the following to the appropriate instance declaration:

instance SuperModel
(ModelType dataSpace) where

mixture mx =
let m2 datum
= calculate weighted avg’

in MMsg (I;Iéél mx) m2

Similarly a mixture of TimeSeries of dataSpace
is a TimeSeries of dataSpace:

instance SuperModel
(TimeSeriesType dataSpace) where

mixture mx =
let
f context = mixture(Mix (mixer mx)
(map (\(TSM _ ftsm) -> ftsm context)
(components mx)))
in TSM (msgl mx) f

Note that the mixture of TimeSeries operates
through the mixture of predicted Models for each po-
sition in the data series.

And a mixture of FunctionModels of inSpace
opSpace is a FunctionModel of inSpace opSpace:

instance SuperModel
(FunctionModelType inSpace opSpace) where
msgl (FM mdlLen m) = mdlLen
mixture mx =
let condM inp = mixture (Mix (mixer mx)
(map (\f -> condModel f inp)
(components mx)))
in FM (msgl mx) condM

It is defined through the mixture of conditional
Models for a given input value.

7.1 Mixture Modelling

The preceding sections have discussed various kinds
of statistical models with hardly a mention of an in-
stance of any particular model. Here an example of
a particular inference problem and an inference algo-
rithm for it are presented.

The problem is mixture modelling (unsuper-
vised classification, clustering, numerical taxonomy)
(Wallace and Boulton 1968, Day 1969, Wolfe 1970),
that is: Given univariate or multivariate data, infer a
mixture Model that best describes the data. In gen-
eral neither the number of component Models in the
answer nor the parameter values of the components
are known in advance. This problem provided possi-
bly the first application of information theoretic infer-
ence to an important, practical problem: Wallace and
Boulton (1968) developed the MML theories of the
multi-state distribution, the normal distribution and
multivariate combinations of them, and embodied the
results in a Fortran program, Snob. Snobbery, its
family of descendants in other languages, is alive and
well (in unsupervised classification the components
of a mixture are often called classes but that word
is already taken here by the programming language
use), and there continues to be interest in MML and
mixture modelling (Figueiredo & Jain 2002). MML
allows simple and complex mixtures, of few and many
components, to be compared fairly giving a built-in
stopping criterion as an alternative to a external sig-
nificance test (Wolfe 1970), say.

This paper is not about mixture modelling as such;
the problem is simply used as a representative (and
important) problem from statistics, machine learning
and data mining; most data mining platforms have
some sort of clustering ability. In the present frame-
work, an estimator is required for a mixture Model
given a list of estimators and a data set.

estMixture ests dataSet =
let ...
in ...

For simplicity only, the number of components is
fixed as the length of the List of estimators, ests;
Snob’s full optimization algorithm can also split and
merge classes and uses extra heuristics in its search
for the optimal mixture. Although the number of
components is fixed here, the total message lengths
for one, two, three, ... etc. components, up to some
moderate limit, could be compared to perform a more
general search.

The search problem involves a chicken (mixture)
and an egg (memberships). Given a mixture, the
probability that a given datum belongs to the c-th
component, Model m, of the mixture is proportional
to the probability of component ¢ times the probabil-
ity of the datum given that Model:

(pr mixer c) * (pr m datum)

estMixture ests dataSet =
let
memberships (Mix mixer components)
= ... as discussed

randomMemberships
= ... not hard

fit [1 [0 = [1
fit (est:ests) (mem:mems)
= (est dataSet mem) (fit ests mems)

fitMixture mems
= Mix (freqs2model
(map (foldl (+) 0) mems))
(fit ests mems)
cycles ... as discussed

in mixture(cycles some_value
(fitMixture randomMemberships))

Figure 2: Estimate a Mixture Model

Normalising these values gives the probabilities that
the datum belongs to component 0, component 1,
etc.. These values are also called the (fractional)
memberships of the datum.

Given the fractional memberships of all the data,
a new mixture can be estimated: The weight of a par-
ticular component in the mixture becomes the sum of
the fractional memberships of the data for that com-
ponent, i.e. the number of data that it owns. The
fractional memberships also form weights for estima-
tion of the parameters of a component Model, being
fed, with the data set, into the estimator for that
component. (Total assignment of a datum to a sin-
gle component leads to biased parameter estimates in
general; fractional assignment avoids such a failing.)

The final algorithm is a typical expectation maxi-
mization loop (Baum & Eagon 1967, Dempster, Laird
& Rubin 1977), fitting memberships to the mixture,
then fitting a mixture to the memberships, repeat-
edly:

cycle mx
cycles 0 mx
cycles n mx

fitMixture (memberships mx)
mx
cycles (n-1) (cycle mx)

The process is initiated by allocating random frac-
tional memberships of data items across the compo-
nents. Figure 2 shows the estimator algorithm to find
a mixture Model.

estMixture, can be used to estimate a mixture
Model of a given number of component Models, for
any type of data, given (i) the estimators for those
components and (ii) a corresponding training data
set. e.g. To infer simple properties of calls in a game
of two up:

twoUpData [(H,H), (T,H), . etc.]
est2coins =
estBivariateWeighted(
estMultiStateWeighted,

estMultiStateWeighted)

twoCoins
= estMixture [est2coins, est2coins]
twoUpData

The result is a two-component mixture Model of pairs
of Throws. A type error will result if an attempt is

made to use twoCoins with any other sort of data, al-
though nothing in the definition of estMixture limits
that function to that kind of data.

If for example (H,H) and (T,T) are suffi-
ciently over-represented and (T,H) and (H,T) are
under-represented in twoUpData then the best two-
component Model fits the data better than a one com-
ponent Model under the MML criterion, and the con-
clusion is that something fishy is going on in the game.

It can be said that estMixture itself only really
estimates the weights of the components and passes
off the responsibility of estimating the parameters of
the components to other estimator functions. This
is true, but the estimator for the multistate Model
(distribution) has been seen to be quite simple, and
that for the normal Model (distribution) is well known
and not difficult. Passing off responsibility is also
a good thing! If a more complex multi-variate es-
timator performing, say, factor analysis (Wallace &
Freeman 1992) is developed then it can be used with
estMixture without change to the latter.

A nice feature of estMixture is that the only
reference to a component, m, of the mixture be-
ing a Model is the ability to apply (pr m datum)
to it. Recall that a FunctionModel of inSpace
opSpace can be turned into a Model of (inSpace,
opSpace) by functionModel2model (Section 6.2),
and that an estimator of a FunctionModel can be
treated analogously. This means that estMixture
can also, in effect, infer mixtures of FunctionModels
for no extra effort. A TimeSeries of dataSpace
can also be turned into a Model of [dataSpace],
and hence estMixture can in principle also infer
mixtures of TimeSeries. In the previous example
twoCoins is a memory-less TimeSeries of Throw (be-
cause ModelType is also an instance of TimeSeries),
but TimeSeries that examine the context are of
course possible.

8 Classification (Decision) Trees

Classification trees, also known as decision trees, are
used in supervised classification. The problem is to
learn a classification function, from an input space,
inSpace, to an output space, opSpace, given exam-
ples, i.e. learn a FunctionModel of inSpace opSpace.
The best known classification tree program is C4.5
(Quinlan 1992) and its relatives. In that program
opSpace must be an enumerated, bounded, unordered
type.

It is not hard to define a classification tree,
CTreeType, in the present framework. A tree can be
a leaf, (CTleaf (ModelType opSpace)). Note that
the leaf Model can be of any opSpace at all — of Float,
of (BloodPressure, BloodSugar), etc.; this is more
general than C4.5. A tree can also be a fork with
subtrees.

A traditional fork, CTforkTrad, contains a selector
function on inSpace that will send a datum down one
of the subtrees, together with the message length of
the function for MML purposes, and a list of subtrees.
For example, the function might test the gender of a
person to decide whether to use the Oth or 1st sub-
tree to predict the opSpace attribute(s). The selector
function can be thought of as an extreme, all or noth-
ing, kind of FunctionModel of inSpace Int. This
also suggests a more general kind of fork, CTfork.

data CTreeType inSpace opSpace =
CTleaf (ModelType opSpace) |
CTforkTrad MessagelLength
(inSpace -> Int)
[CTreeType inSpace opSpace] |
CTfork (FunctionModelType inSpace Int)
[CTreeType inSpace opSpacel

It might be useful to define a class Function and
make type — an instance of it; a subclass of
Functions having message lengths could then de-
fined, allowing a more elegant version of CTforkTrad.
Unfortunately Function would have to be a slightly
special system class before the implicit application
operator, “f x”, could be overloaded.

A CTfork node contains a selector FunctionModel
and a List of subtrees, sufficient information for what
might be called a FunctionMixture of classification
trees, that is the subtrees all predict the opSpace at-
tribute(s) and the mixture of their results is controlled
by the FunctionModel.

instance SuperModel
(CTreeType inSpace opSpace) where
msgl (CTleaf leafModel) = msgl leafModel
. etc.

instance FunctionModel CTreeType where
condModel (CTleaf leafModel) i
= leafModel
condModel (CTforkTrad fnLen f dts) i
= condModel (dts !'! (f i)) i
condModel (CTfork fnMixer dts) i
= ... etc.

Classification trees can now be created and com-
pared under, say, the MML criterion (a search algo-
rithm is given elsewhere (Allison 2002)). e.g. Fred is
suspected of using biased coins:

cTree =
CTforkTrad O
(\ip -> if (name ip)=="Fred"
then 0
else 1)
[CTleaf biasedCoin, anotherSubTree]

Our functionModel2model conversion function
(Section 6.2) can also be wused to make a
FunctionModel tree, that is a regression tree, e.g.

—- linear, FunctionModel of Float Float
-- i.e. y ~ a*x+b+(normal O epsilon)
linear a b epsilon = ...

leaf0 =
CTleaf (functionModel2model
(linear 1 2 1))

regTree = CTfork (...) [leafO, ...]

The general result is a FunctionModel of ipSpacel
(ipSpace2, opSpace), which can be rejigged to
FunctionModel of inSpace opSpace by the use of
a trivial wrapper function where inSpace, inSpacel
and inSpace?2 are related at the programmer’s dis-
cretion; e.g. inSpace, inSpacel and inSpace2 can
be identical, or inSpacel and inSpace2 can be sep-
arate with inSpace being their product, and so on.

9 Files

The Haskell code of the previous sections is not in-
tended for processing very large data sets, as it makes
the assumption that the data fit into (virtual) mem-
ory, although that is not to say that the restriction
could not be lifted. As a semantic study, or as a
rapid-prototype of a data-mining platform, this is not
important.

The types and classes defined for statistical mod-
els are completely general about the data spaces
they apply to, but a particular statistical model
e.g. fairCoin) is over a particular data space
e.g. Throw). If the data are of a new type and

come from a file there are two possible approaches:
The data could be translated into standard types —
discrete values into Ints and continuous values into
Floats, say. All analysis could then be done in terms
of Ints, Floats and structures of them, and the re-
sults mapped back into the terms of the original data.
Alternatively, a small module could be compiled to
define the types and to read and write the values spe-
cific to the data file and to evaluate their analysis;
nothing else needs recompilation.

10 Conclusions

A step has been taken in designing a collection of
classes, types, values and operators to define statis-
tical models — dare one write “to model modelling”?
Already some surprising generalizations have popped
out, for example in mixture modelling and in classifi-
cation trees.

A reasonable spring-collection of kinds of statis-
tical models has been devised — basic Models and
distributions, FunctionModels including regressions
and classification functions, and TimeSeries such as
Markov models, together with instances of these and
useful operators on and between them and their esti-
mators. These operators add to the generality of the
collection.

Haskell has a fair claim to being the reference
functional programming language of today. It does
make a good meta-language for the study of statis-
tical models. A result is a theory that is rigorously
type checked, and that runs. There is no reason why a
Haskell program need be more than a small constant
factor slower than a corresponding C or Java program
so the theory should be usable, at least on data sets
of moderate size. Haskell’s type system is powerful
and flexible and has proved invaluable to the exer-
cise. However type systems are still an active area
of research and it is possible that some further type
features might be useful in this kind of study.

11 Acknowledgements

Many thanks go to members of the Central Induc-
tive Agency in Computer Science and Software Engi-
neering at Monash, particularly Josh Comley, Leigh
Fitzgibbon and Chris Wallace, who always provide
much inspiration.

References

Allison, L. (2002), Model Classes, TR 2002/125,
School of Computer Science and Software Engi-
neering, Monash University, Clayton, Victoria,
Australia.

Allison, L., Powell, D. & Dix, T. I. (1999), Compres-
sion and approximate matching, Computer Jour-
nal 41(1), pp. 1-10.

Allison, L. & Yee, C. N. (1990), Minimum mes-
sage length encoding and the comparison of
macromolecules, Bulletin of Mathematical Biol-
ogy, 52(3), pp. 431-453.

Baum, L. E., & Eagon, J. A. (1967), An inequal-
ity with applications to statistical estimation for
probabilistic functions of Markov processes and
to a model of ecology, Bulletin Amer. Math. Soc.
73, pp- 360-363.

Bayes, T. (1763), An essay towards solving a prob-
lem in the doctrine of chances, Philosophical
Transactions of the Royal Society of London 53,

pp. 370-418, reprinted in Biometrika 45(3/4),
pp- 293-315, 1958.

Church, A. (1941), The Calculi of Lambda conversion,
Princeton University Press, Annals of Math.
Studies 6.

CRAN: The comprehensive R archive network.
http:)//lib.stat.cmu.edu/R/CRAN/ (current
2002).

Day, N. E. (1969), Estimating the components of
a mixture of normal distributions, Biometrika
56(3), pp. 463-474.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977),
Maximum likelihood from incomplete data via
the EM algorithm, Journal of the Royal Statis-
tical Society series B 39(1), pp. 1-38.

Farr, G. E. & Wallace, C. S. (2002), The complex-
ity of strict minimum message length inference,
Computer Journal 45(3), pp. 285-292.

Figueiredo, M. A. T. & Jain, A. K. (2002), Unsu-
pervised learning of finite mixture models, IEEE
Transactions on Pattern Analysis and Machine
Intelligence 24, pp. 381-396.

Hudak, P., et al. (1992), Report on the Programming
Language Haskell, version 1.2, Sigplan 27(5).

Humphrey, N. K. (1973), The illusion of beauty, Per-
ception 2, pp. 429-439.

Milne, R. & Strachey, S. (1976), A Theory of Pro-
gramming Language Semantics (2 vols), Chap-
man Hall.

Milner, R. (1978), A theory of type polymorphism in
programming. Journal of Computer and System
Science, pp. 348-375.

Oliver, J. & Baxter, R. A. (1994), MML
and Bayesianism: Similarities and differences,
TR 206, Department of Computer Science,
Monash University, Clayton, Victoria, Australia.

Peyton Jones. S., et al. (1999),
the Programming Language
http://www.haskell.org/

Quinlan, J. R. (1992), C4.5: Programs for machine
learning, Morgan Kaufmann.

Shannon, C. E. (1948), A mathematical theory of
communication, Bell Systems Technical Journal
27, pp. 379-423 and pp. 623—656.

Stern, L., Allison, L., Coppel, R. L. & Dix, T. L
(2000), Discovering patterns in Plasmodium fal-
ciparum genomic DNA, Molecular and Biochem-
ical Parasitology, 118(2) pp. 175-186.

Report on
Haskell-98.

Strachey, C. (1967), Fundamental concepts of pro-
gramming languages, Int. Summer School in
Computer Programming, Copenhagen, also in
Higher-Order and Symbolic Computation 13(1-
2) pp. 1149, 2000.

Venables, W. N. & Ripley, B. D. (1999), Modern Ap-
plied Statistics with S-PLUS, 3rd edn., Springer.

Wallace, C. S. & Boulton, D. M. (1968), An informa-
tion measure for classification, Computer Jour-
nal 11(2) pp. 185-194.

Wallace, C. S. & Freeman, P. R. (1987), Estimation
and inference by compact coding, Journal of the
Royal Statistical Society series B. 49(3) pp. 240—
265.

Wallace, C. S. & Freeman, P. R. (1992), Single-factor
analysis by minimum message length estimation,
Journal of the Royal Statistical Society series B.
54(1) pp. 195-209.

Wallace, C. S. & Georgeff, M. P. (1983), A general
objective for inductive inference, TR 32, Depart-
ment of Computer Science, Monash University.
(An abridged version appeared as M.P.Georgeff
& C.S.Wallace. A general selection criterion for
inductive inference, European Conference on Ar-
tificial Intelligence (ECAI), Pisa, pp. 473-482,
September 1984.)

Witten, I. H. & Frank, E. (2000), Nuts and bolts: Ma-
chine learning algorithms in Java, in Data Min-
ing: Practical Machine Learning Tools and Tech-
niques with Java Implementations, pp. 265-320,
Morgan Kaufmann.

Wolfe, J. H. (1970), Pattern clustering by multivari-
ate mixture analysis, Multivariate Behavioural
Research 5, pp. 329-350.

