Flexible Decision Trees in a General
Data-Mining Environment

Joshua W. Comley, Lloyd Allison, and Leigh J. Fitzgibbon

School of Computer Science and Software Engineering
Monash University, Clayton 3800, Australia
{joshc,1loyd,leighf}@bruce.csse.monash.edu.au

Abstract. We describe a new data-mining platform, CDMS, aimed at
the streamlined development, comparison and application of machine
learning tools. We discuss its type system, focussing on the treatment of
statistical models as first-class values.

This allows rapid construction of composite models - complex models
built from simpler ones - such as mixture models, Bayesian networks
and decision trees. We illustrate this with a flexible decision tree tool for
CDMS which rather than being limited to discrete target attributes, can
model any kind of data using arbitrary probability distributions.

1 Introduction

This paper introduces the ‘Core Data-Mining Software’ (CDMS) system and
a flexible decision tree inference program implemented as a CDMS ‘plug-in’.
CDMS is a general data-mining platform providing a tool-box of common oper-
ations such as data input and output, manipulation, and visualization. CDMS
is being developed at Monash University, and although only in its early stages is
already proving to be a useful environment for the streamlined implementation
of a variety of machine learning and statistical analysis tools.

Many other machine learning and data-mining platforms exist (e.g. S-plus [7],
R [5], and Weka [12]), but the unique handling and definition of statistical models
by CDMS makes it a particularly interesting and powerful system. Section 2
describes CDMS and discusses its representation of values and data types. In
section 3 we examine the characteristics of a CDMS model.

A statistical model is treated as a value by CDMS, meaning that it may
be the subject or result of functions, or even a parameter for another model.
By including models as parameters for other models, we can build powerful
composite models. We illustrate this with a rather general decision tree ‘plug-
in’, described in section 4, and give examples in section 5.

2 The Core Data Mining Software (CDMS) Platform

CDMS provides a framework in which to implement data-mining and machine
learning tools, referred to in this paper as ‘plug-ins’. It has a library of inbuilt



functions, models and other values which plug-ins can utilize and add to. CDMS
is capable of performing input/output of data in various file formats, including
standard delimited text files, Weka [12] ‘.arff’ files, GenBank files and C5’s [6]
‘.data’ and ‘.names’ files. It is implemented in Java and offers an intuitive graph-
ical user interface. It is currently under development, but it is anticipated that
a prototype will be available soon.

Data is represented in CDMS as values. CDMS defines various types of values
using a class hierarchy. This includes simple types such as string, scalar - which
has the sub-types of discrete and continuous - and ‘Triv’ (the null type of CDMS).
In addition, the structured and vector types provide support for heterogeneous
and homogeneous collections of values respectively. Functions are also treated as
values in CDMS. They are characterized by a parameter type and result type. A
function can be applied to any value which matches the parameter type, giving
a new value which will match the result type. Because functions are values, one
could build a vector of them, or even write a function which can be applied to
a function, giving another function as a result.

3 CDMS Models

This section discusses another type of CDMS value - the model, which we define
here to be a family of distributions (e.g. normal distributions). When predicting
or generating data, or when obtaining a likelihood, the distribution to be used is
determined by the parameters supplied to the model. For a discussion of closely
related schemes for model types and operations, see [1], and [4].

Models are characterized by the kind of values they work with. This is broken
down into the parameter space, data space, input space, and sufficient space.

The parameter space refers to the type of parameters the model requires.
For example, a Gaussian model requires the mean and variance as parameters -
which can be represented in CDMS using a structure of two continuous values.

The data space! is the type of data that is modelled - i.e.the data over which
the model can give a probability density. This density is typically a function of
the model’s parameters, and often of some ‘input’ data as well.

The input space is the type of any ‘input’ or ‘explanatory’ data that the
model requires (in addition to its parameters) to provide a probability of the
observed target data. Examples include the explanatory attributes of a decision
tree, or the ‘independent’ attributes in a polynomial regression.

The sufficient space refers to the type of data that can capture all the infor-
mation needed by the model about a vector of input data, and a corresponding
vector of output data. Such data are commonly referred to as a ‘sufficient statis-
tic’. For a more detailed discussion of sufficient statistics in relation to models,
data types and efficient computations, see [4].

Any CDMS model should be able to perform the following operations: log-
probability, prediction, generation, and ‘get-sufficient’.

! referred to in this paper also as the ‘target data’ type, or ‘output data’ type



The ‘log-probability’ operation requires a model to compute the log-probability
of some given output data, when also supplied with parameters and a vector of
input data. Models are also required to perform this operation when given suf-
ficient statistics in place of the vector of input and output data.

The prediction operation involves the model selecting the ‘most likely’ out-
put vector, when presented with parameters and a corresponding input vector.
Generation is similar to the prediction operation, but instead of returning the
most likely output value, the model pseudo-randomly selects an output value by
sampling from the predictive distribution.

When presented with a vector of input and output data, the ‘get-sufficient’
operation requires models to return the corresponding sufficient statistic.

4 Decision Trees

Decision trees model the correlation between the input and output attributes in
order to predict likely output values for future ‘test’ data-sets where only the
input values are known. Decision tree tools such as C5 [6], CART [3], and DTree
[11] generally do this well, but are often only applicable to problems where the
output attribute takes discrete values. Furthermore, rather than modelling the
output attribute probabilistically some decision trees simply state the predicted
value for each test case. Here we are concerned with a more general situation
where the output attribute is not necessarily discrete, and where we wish to
model it with a probability distribution.

The tree plugin has been designed to accept any CDMS model in the leaves,
allowing us to use arbitrary distributions to fit the output data. A tree class
is constructed from modular elements (described below) which are largely inde-
pendent, making it easy to assemble decision tree classes to suit a range of data
sets.

The leaf model of a decision tree class defines how the target attribute
is to be modelled. Each leaf is likely to contain different parameters for this
model, which are estimated using the tree’s leaf estimator function, based
on the training data pertaining to the leaf. Examples of simpler leaf models
include Gaussian and multi-state distributions, but any CDMS model could be
used. By choosing a leaf model with a (non-Triv) input space, e.g. a polynomial
regression, interesting tree classes may be constructed, whose leaves model the
target attribute as a function of one or more input attributes.

A tree class has a branch method for each attribute. This defines how the
attribute will be tested at a branch node. Possible branch methods include ‘hard’
or ‘soft’ cut points for continuous attributes, ‘pie-slice’ cuts for cyclic attributes,
or n-way branches for discrete n-valued attributes. The tree tool can accept any
branch method so long as it can provide a fractional assignment over the branch’s
children when given the attribute to test.



The cost function is used by a search to cost each candidate tree. It is given
a structure comprising the tree model, its parameters, and the data, and returns
a penalty value which the search function? attempts to minimise.

It is interesting to note that the decision tree class, as well as using CDMS
models in its leaves, can itself be seen as a CDMS model. The data space of
the decision tree model is simply the target attribute, while the input space is
a structured value of the explanatory attributes. The parameters of a decision
tree model would include the topology of the tree, the input attribute to be
tested at each branch node and any parameters pertaining to these tests, and
the parameters for the model in each leaf. The search function, leaf estimator
function, and tree costing function are not actually part of the decision tree
model. Rather, they constitute an estimator function for it. Given the training
data and this estimator function, one can obtain an estimate of the optimal
parameters for the decision tree model.

plasConc plasConc
154.5 163
0 199 112
bodyMassIndex 26 3bodyMass|ndex
26.25 PO 0199 ' P[] 0.37
|:- Prh} E 0801 | |°i B
0 67.1 26.3
plasConc 2 age
Pr[O] EI 0.964 109.5 POl 0568
Pr1] 0.036 |:. Pr1] 0082 || gmmm—
0 154 26
age 115 plasConc
31.5
PI[0) 0.802 PIO) 0.825
Pf{l% E 0.198 |:- il E 0175 S
/21 70 90
o] 0.688| Pr{0] 0.402 Pr[0] 0738 P[0] 0474
B =k [ =k ] =B B =E2

Fig. 1. Trees from two decision tree classes. The tree on the left uses ‘hard’ cut-points
to test input attributes, while the tree on the right uses the ‘soft’ cuts.

5 Examples

This section briefly shows example trees from three CDMS decision tree classes.
The first two trees were learnt from the “Pima Indians Diabetes Database”,
available from [2] and are depicted in figure 1. Both classes used a 2-state distri-
bution as the leaf model, and a lookahead-0 search based on a Minimum Message

% Search functions provide a way to traverse the parameter space of a decision tree.



W00 22438 a7 amaz sovs
239.602, sd: 42.65

W0 22038 wa7s emaz sovs 00 2263 ea7s 47iiz sovs 00 2za3s wars aiaz  sovs|
: 220.5, 5d: 6.364 : 255.388, sd: 54.462 301.2, sd: 100.006

Fig. 2. This tree has been learnt from a cholesterol data set, obtained from the Weka
website http://www.cs.waikato.ac.nz/ml/weka/. The data-set is a modified form of the
Cleveland Heart Disease database collected by Dr Robert Detrano, available from [2].

Length (MML) [8-10] tree cost function, similar to that proposed in [11]. The
difference is in the choice of branch methods. The tree on the left used the fa-
miliar ‘hard’ cut-point to test the continuous input attributes, while the tree
on the right used ‘soft’ tests. The soft tests define a ‘ramp’ between two values
a and b. Any item with a value less than a is assigned totally to the left-hand
sub-tree, while any value greater than b is assigned totally to the right. Any
value z between a and b is fractionally assigned to the right hand sub-tree with
weight (z —a)/(b— a).

Figure 2 illustrates a third class of decision tree. This tree uses discrete branch
methods to test input attributes, and uses a Gaussian density function as the
leaf model, supplying a probability density over the continuous target attribute.

6 Results

We now compare the performance of the two decision tree classes shown in figure
1 and that of C5 [6]. Five data sets were analysed - wine, iris, E-coli, pima, and
glass - and are all available from [2]. Table 1 summarizes their characteristics.
The data-sets chosen each had a categorical (discrete) target attribute, allowing
easy comparison with C5 - which, unlike the tree classes presented here, is not
able to model continuous data.

Table 1. A summary of the nature of the five data-sets.

Data-set | Target Attribute Other Attributes
Wine |3-valued discrete|12 continuous attributes
Iris |3-valued discrete| 4 continuous attributes
E-coli [8-valued discrete| 7 continuous attributes
Pima |2-valued discrete| 8 continuous attributes
Glass |7-valued discrete| 9 continuous attributes




Probabilistic Score Classification Error
C5
Q (¢l T— o

MML ramp 1 g MML ramp =
MML hard tJ MML hard =

cs d " cs i *
MML ramp ' = MML ramp o =
MML hard o MML hard m

3} m 5 c5 us| —
MML ramp =] UL'j MML ramp mm| $
MML hard mm| MML hard s} w

C5 < C5| <
MML ramp ] .E MMLramp| D _E
MML hard a MML hard| @ a

C5 @ C5| O
MML ramp o «© MML ramp ﬁ
MML hard | Co o MML hard 0]

[ 0.2 04 0.6 0.8 1 12 14 o 10 20 30 40 50 60
(best, average, worst) Nits per Item (best, average, worst)
% Classification Error

Fig. 3. A comparison of three decision tree methods. ‘MML-ramp’ refers to the tree
class on the right in figure 1, using soft cut-points to test continuous input attributes.
‘MML-hard’ refers to the tree class on the left in figure 1, which like C5, uses hard
cut-points to test continuous attributes.

We have assessed each method using both classification error and probabilis-
tic score. Classification error simply measures the percentage of misclassified
test cases (which only makes sense when dealing with discrete target attributes).
Probabilistic score is a more general measure of performance, which penalises
a method according to the negative logarithm of the probability the method
assigns to the test data. This score rewards accurate estimates of probabilities,
taking into account the certainty with which a prediction is made, rather than
simply treating each prediction as ‘right’ or ‘wrong’. Probabilistic score is thus
more informative than classification error, and reflects our interest in probabilis-
tic prediction. For many real-world instances, we would like to know not just the
most likely outcome, but how likely this outcome is. For example, in a medical
scenario, if we believed that a radical new treatment was 99% likely to succeed,
the patient may feel differently than if the chance of success was believed to be
only 51%.

For each data-set, we performed a 10-fold cross-validation experiment (with
90% training data, 10% testing data). The performance of each method was
averaged over the 10 test-sets, resulting in a score, s. We then repeated this 10
times, recording for each method the best, worst, and average s. This is shown
in figure 3.



Although C5 often yields superior classification error, we can see from the
probabilistic score that it does not do so well at inferring accurate probabili-
ties. An explanation for this is that it tends to estimate more extreme distribu-
tions, and may therefore make predictions with more certainty than is warranted.
While assigning a near-zero probability to a test item does not impact greatly
on classification error, it can have a disastrous effect on probabilistic score.

The results for the iris, E — coli and wine data-sets demonstrate the merits
of a more general class of decision tree. In the probabilistic score especially,
we can see that the ‘soft ramp’ branch tests significantly improve performance,
providing a more accurate probabilistic model of the target attribute.

7 Conclusion

We have given an overview of a general data-mining platform that provides
in-built support for statistical models in its type system. Using a decision tree
‘plug-in’ as an example, we have discussed how complex models can easily be con-
structed using simpler models as building blocks. This approach lets us quickly
build a versatile library of machine learning tools that are tightly integrated with
the system, rather than being stand-alone algorithms.

References

1. L. Allison. Types and classes of machine learning and data mining. In Proceed-
ings of the Twenty-Sizth Australasian Computer Science Conference (ACSC2003),
pages 207-215, Adelaide, South Australia, 2003.

2. C. Blake and C. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company,
Belmont, California, U.S.A., 1984.

4. L. Fitzgibbon, L. Allison, and J. Comley. Probability model type sufficiency. In
Proc. 4th International Conference on Intelligent Data Engineering and Automated
Learning, 2003.

5. R.Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299-314, 1996.

6. J. R. Quinlan. C5.0. http://www.rulequest.com.

7. W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-PLUS.
Springer, 3 edition, 1999.

8. C. S. Wallace and D. M. Boulton. An information measure for classification.
Computer Journal, 11:185-194, 1968.

9. C. S. Wallace and D. M. Boulton. An invariant Bayes method for point estimation.
Classification Society Bulletin, 3(3):11-34, 1975.

10. C. S. Wallace and P. R. Freeman. Estimation and inference by compact coding.
J. Royal Statistical Society (Series B), 49:240-252, 1987.

11. C. S. Wallace and J. D. Patrick. Coding decision trees. Machine Learning, 11:7-22,
1993.

12. 1. H. Witten and E. Frank. Nuts and bolts: Machine learning algorithms in Java.
Morgan Kaufmann, 1999.



