
Probability Model Type Sufficiency

Leigh J. Fitzgibbon, Lloyd Allison and Joshua W. Comley

School of Computer Science and Software Engineering
Monash University, Victoria 3800, Australia

{leighf,lloyd,joshc}@bruce.csse.monash.edu.au

Abstract. We investigate the role of sufficient statistics in generalized
probabilistic data mining and machine learning software frameworks.
Some issues involved in the specification of a statistical model type are
discussed and we show that it is beneficial to explicitly include a suf-
ficient statistic and functions for its manipulation in the model type’s
specification. Instances of such types can then be used by generalized
learning algorithms while maintaining optimal learning time complex-
ity. Examples are given for problems such as incremental learning and
data partitioning problems (e.g. change-point problems, decision trees
and mixture models).

1 Introduction

The formal specification of a statistical model type is an important ingredient
of machine learning software frameworks [1]. In the interests of software reuse,
robustness, and applicability the model type should encompass a general notion
of a statistical model, and allow generalized machine learning algorithms to op-
erate using any valid model type while still maintaining optimal time complexity.
The model type should encourage and facilitate the decoupling of learning algo-
rithms from the statistical models that they operate over, allowing the two to
be plugged together as required depending on the problem and data involved.
An intuitive example is that of a generalized decision tree algorithm that can
operate with any valid model type in the leaves.

Sufficient statistics play an important role in reducing the time complexity
of many machine learning algorithms. In this paper we investigate how the ex-
plicit inclusion of sufficient statistics in a model type allows machine learning
algorithms to be generalized while maintaining optimal time complexity.

Code examples are given in the Haskell [4] programming language using a
fixed width font. Footnotes are used to explain some of the semantics of the
Haskell code.



2 A Basic Model Type

In this section we define the basic requirements for a model type that can be
used for inference or learning. To perform probabilistic learning we need either
the log-probability density/distribution function1:

lpr :: theta -> x -> Double

or the log-likelihood function2:

ll :: [x] -> theta -> Double

Since these can be derived from one another, having either the log-likelihood
or log-probability function would allow one to do likelihood based inference.
However, we are also interested in the time complexity of the basic model type
and the implications this model type has on a system that is built around such
a type. Note the difference in the order that the parameters are given in the two
(curried) functions. The log-likelihood function requires the data-set as its first
parameter, whereas the log-probability function requires the model parameters
as the first parameter. This is because the log-likelihood function by definition is
used for calculating the log-likelihood of the parameters whereas the probability
function is used to calculate the log-probability of the data. These are conceptu-
ally two very different things. The log-likelihood function will be evaluated for
different values of theta (e.g. numerical integration of parameters; simulation; op-
timisation - maximum likelihood, maximum posterior, minimum message length
[7], minimum description length [6]), whereas we will generally evaluate the log-
probability function for varied values of the data (e.g. numerical integration;
optimisation - mode; moments; numerical entropy).

The log-likelihood function is used for inference, and if time complexity is
of any importance then it needs to evaluate efficiently since it will be called
frequently. Therefore the order of the parameters is important, the data must
come first, for which a [minimal] sufficient statistic can be computed and stored,
then the log-likelihood can be evaluated in optimal time for each call. It follows
that a basic model type that explicitly includes sufficient statistics requires at
least the following functions:

data ModelType x theta s = Model {
lpr :: theta -> x -> Double,
ss :: [x] -> s,
ll :: s -> theta -> Double

}

1 I.e. a function that given an element from the parameter space, and an element from
the dataspace, returns the log-probability of the data element given the parameter.

2 I.e. a function that given a vector of elements from the dataspace, and an element
from the parameter space, returns the log-probability of the data elements given the
parameter.



where ss is a function for computing the sufficient statistic for a given data-set.
There are many other operations that could be built into the model type.

There are also important functions that are clearly distinct from model types
yet are related. For example an estimator function with type:

type Estimator theta s = s -> theta

In the following sections we will show that having sufficient statistics as an
explicit part of the model type allows for efficient implementations of a large
class of popular algorithms.

3 Incremental Learning

Assume we initially observe some data x1 and then estimate the model param-
eters according to some criterion (e.g. maximum likelihood). We might then
observe more data, x2, which is assumed to come from the same distribution.
We then wish to revise our parameter estimate in light of the new data. We
therefore wish to update the sufficient statistic to take into account the new
data. The type of such a function would be:

type AddSs x s = s -> [x] -> s

Once the sufficient statistic has been update we can evaluate the likelihood
function in best case time for the given sufficient statistic. If minimal sufficient
statistics are used then these will typically be in the order of the dimension of
the number of parameters being estimated.

More generally, we observe M data-sets incrementally {xi : i = 1..M} for
which we make M estimates {θi : i = 1..M}. Let the length of data-set xi be
denoted by Ni. We wish to estimate the parameters, θi, for each xi using a known
estimator function. Based on the data types defined so far we can describe the
type of this incremental learning function (incLearn):

incLearn :: [[x]] -> (ModelType x theta s) ->
(Estimator theta s) -> (AddSs x s) -> [theta]

which returns the vector of inferred parameters.
The incLearn function is able to perform incremental learning for any model

type in optimal time3.

4 Learning Models that Partition the Data

A large class of useful and popular inference algorithms partition the data-set
into a pairwise disjoint set. Examples are change-point, decision tree, and mix-
ture model algorithms. These algorithms can be efficiently implemented by stor-
ing a sufficient statistic for each subset and then updating the statistic as the
subsets change (i.e. as data is added and removed). So as well as the AddSs
function defined in the previous section, we also require a RemoveSs function:
3 We ignore the function call overhead in the implementation language.



type RemoveSs x s = s -> [x] -> s

which allows for the removal of a set of data from a sufficient statistic.

Change-Point Algorithms Change-point algorithms are quite common and
can be found as the building blocks of more complex algorithms (e.g. decision
trees). There are many algorithms for change-point problems that benefit from
sufficient statistics. One example is the approximate binary search algorithm
where the optimal location for a single change-point is found and then this is
repeated recursively on each segment until some stopping criterion is reached.
Another example is the dynamic programming algorithm (see e.g. [3]) which can
identify the optimal change-point locations.

Using the types defined so far, a multiple change-point algorithm could be
implemented that operates with arbitrary models in the segments. The algorithm
could achieve optimal time complexity using the AddSs and RemoveSs functions.

Mixture Modelling There is some research into versions of the EM algorithm
that do not require all of the data to be visited. For these algorithms the use of
sufficient statistics can improve the algorithm’s time complexity. One example
can be found in [5] where k-d trees and sufficient statistics are used to improve
the time complexity of the algorithm for a specified class of distributions.

5 Revised Model Type

Given that incremental learning is a generic operation, and that data partition-
ing algorithms are extremely common one may consider including the update
functions (addSs and removeSs) in the model type. There appears to be no
downside to the inclusion of these functions in the model type especially since
the data itself is a sufficient statistic and therefore a default implementation
could simply manipulate the data. The Haskell code for the revised model type
becomes:

data ModelType x theta s = Model {
lpr :: theta -> x -> Double,
ss :: [x] -> s,
ll :: s -> theta -> Double,
addSs :: s -> [x] -> s,
removeSs :: s -> [x] -> s

}

For a large class of distributions (e.g. the Exponential Family [2]) the addSs and
removeSs functions will be trivial, only involving addition and subtraction.



6 Parallelism

In probabilistic machine learning algorithms the likelihood function is the major
(if not the only) link to the data. Through use of sufficient statistics we replace
the high-dimensional data with a possibly low dimension sufficient statistic. If the
algorithm is parallelised then the low dimensional sufficient statistic need only be
transmitted between processors (instead of the data) thus reducing communica-
tion time as well as improving time complexity (over transmission and inference
using the raw data). The revised model type defined in the previous section
facilitates the use of sufficient statistics in generalized parallel algorithms.

7 Conclusion

We have investigated the explicit use of sufficient statistics in the definition of a
statistical model type for machine learning software frameworks. A model type
was defined and several examples explored in the functional language Haskell.
The type explicitly includes a sufficient statistic which allows for the implemen-
tation of a class of generalized machine learning algorithms that have optimal
time complexity.

References

1. L. Allison. Types and classes of machine learning and data mining. In M. Oud-
shoorn, editor, Proceedings of the Twenty-Sixth Australasian Computer Science Con-
ference, volume 16, pages 207–215, February 2003.

2. J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley Series in Probability
and Mathematical Statistics. John Wiley and Sons, Chichester, 1994.

3. L. J. Fitzgibbon, L. Allison, and D. L. Dowe. Minimum message length grouping
of ordered data. In H. Arimura and S. Jain, editors, Proceedings of the Eleventh
International Conference on Algorithmic Learning Theory (ALT2000), volume 1968
of Lecture Notes in Artificial Intelligence, pages 56–70, Berlin, 2000. Springer-Verlag.

4. P. Hudak and J. H. Fasel. A gentle introduction to Haskell. SIGPLAN Notices,
27(5), May 1992.

5. A. Moore. Very fast EM-based mixture model clustering using multiresolution kd-
trees. In Advances in Neural Information Processing Systems (NIPS). MIT Press,
December 1998.

6. J. J. Rissanen. Hypothesis selection and testing by the MDL principle. Computer
Journal, 42(4):260–269, 1999.

7. C. S. Wallace and D. L. Dowe. Minimum message length and Kolmogorov complex-
ity. The Computer Journal, Special Issue - Kolmogorov Complexity, 42(4):270–283,
1999.


