Inductive Inference 1.1

Lloyd Allison
School of Computer Science and Software Engineering,
Monash University,

Clayton, Victoria, Australia 3800.
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
Technical Report 2004/153
(submitted 3 May, revised 13 May)

May 13, 2004

Abstract

Examined, the succinct expression of general solutions to inductive
inference problems. Haskell types and type classes define the properties
of various kinds of statistical model — distributions, function models and
time-series. This is an application of Haskell which itself has applications,
and is almost as general as Haskell’s own area of application. Case studies
in inductive inference, including mixtures of Markov models, state-based
time-series, missing data, and mixed Bayesian networks, illustrate the
functional style of programming with models. Polymorphic types, type
inference, high-order functions and lazy evaluation are all useful.

Keywords: Bayesian networks, inductive inference, machine learning, min-
imum message length, MDL, MML, statistical models.

1 Introduction

Q: ‘Function’ is to ‘functional programming’ as ‘statistical model’ is
to what?
A: Please send suggestions to the above address.

The report’s aim is to express succinctly general solutions to inductive in-
ference problems (Allison 2003a). The problems come from machine learning
and data mining, and solutions take the form of statistical models and their
estimators. Here there are two distinct ways in which we can be succinct. The
first is in writing programs to solve new problems: a general system will tend to
produce reusable solutions, an ezpressive system will make it easy to write new
solutions that are succinct, and general. The second comes from a preference to
return a “simple” model rather than a “complex” one, unless the latter is really
necessitated by the data, i.e. avoid over-fitting.

The functional programming language Haskell is chosen (Allison 2004) be-
cause it is expressive and because it has a powerful system of polymorphic
types and type classes. Functional programming encourages the composition of
functions, and polymorphic types lead to general solutions. When it comes to
inductive inference it is statistical models and functions on them that are to be
composed.

The problem of over-fitting is well known. William of Occam argued, in
medieval times, that explanations should be kept simple unless necessity dictates
otherwise. A computer program doing inductive inference must address model
complexity in some way. If models are to be composed to make new models
the complexity of the composition must be dealt with. It is argued that the
minimum message length (MML) criterion (Wallace and Boulton 1968) is a
natural partner for functional programming in this domain.

Useful statistical models, and estimators, have been defined and can be used
as building blocks in more complex models; using a good type and type-class
system reveals their true generality (Allison 2003a). To quote Peyton Jones
et al (2000, p280) on a different domain — the domain of the ‘compositional
denotational semantics’ of financial contracts — ‘At this point, any red blooded
functional programmer should start to foam at the mouth, yelling “build a com-
binator library”’, a vivid image! Such libraries have been defined for various
domains, e.g. parsing, graphics, etc. (van Deursen et al 2000). In many of those
domains the data types involved are quite specific, e.g. parsing is concerned
with characters, symbols (strings) and trees. But in the present case, statistical
models, operators and data can be very general — pretty much any computable
model inferred from almost any type of data by an arbitrary algorithm. That
is almost as general as the “application domain” of Haskell itself. And a ‘com-
positional denotational semantics’ of statistical models needs a compositional
solution to the over-fitting problem; MML is advocated.

Inductive inference is an application of Haskell, but it is an application that
is general and itself has many applications. This report does not “just” describe
a Haskell program but it does use pieces of Haskell programs from case studies
to illustrate programming with statistical models.

The report covers code version 200312 which updates 200309 (Allison 2003b).
All code was compiled under the Glasgow Haskell Compiler, ghc, version 6.0.1.
Local readers can find the case studies of
mixtures of Markov models in . . ./II/200312/20031218/,

Bayesian networks in . ../II/200312/20031229/ and
stateful time-series in . ../II/200312/20040311/.

2 MML

Minimum message length (MML) inference (Wallace and Boulton 1968, Wallace
and Freeman 1987) builds on Shannon’s ‘mathematical theory of communica-
tion’ (1948), hence ‘message’, and on Bayes (1763):

Pr(M&D) = Pr(M) .Pr(D|M) = Pr(D) .Pr(M|D)

msglen(E) = -log(Pr(E))
msglen(M&D) = msgLen(M)+msgLen(D|M) = msgLen(D)+msgLen(M|D)

where M is a model (theory, hypothesis, parameter estimate) of prior probability
Pr(M) over some data, D, and E is an event of probability Pr(E), and msgLen(E)
is the length of a message, in an optimal code, announcing E.

MML considers a transmitter sending a two-part message to a receiver. The
first part, of length msglen(M), states a model which is an answer to some
inference problem. The second part, msgLen(D|M), states the data encoded as
if the answer, M, is true; the receiver cannot decode the second part without
the first part. If the space of models is finite or even enumerable each plausi-
ble model can be given a non-zero probability, but if one or more continuous
parameters are involved this cannot be done unless the parameters are stated
to finite, optimal accuracy. Strict MML (SMML) is concerned with the design
of such optimal code books. Unfortunately SMML is infeasible for most infer-
ence problems (Farr and Wallace 2003). Fortunately there are efficient, accurate
MML approximations (Wallace and Freeman 1987) for many useful problems
and models.

MML is a compositional criterion because the complexity of data, models and
sub-models are all measured in the same units: “[It is possible] to use [message]
length to select among competing sub-theories at some low level of abstraction,
which in turn can form the basis (i.e., the ‘data’) for theories at a higher level
of abstraction. There is no guarantee that such an approach will lead to the
best global theory, but it is reasonable to expect in most natural domains that
the resulting global theory will at least be near-optimal” (Georgeff and Wallace
1984). In other words MML is a good fit with functional programming for
inductive inference. MML has been used to assess the complexity of combined
models of some specific types (e.g. Georgeff and Wallace 1984, Allison et al
1999) but its full programming potential has only recently started to be studied
(Allison 2003a), hence the question at the start of the introduction. A functional
language with a parametric polymorphic type system is a sound foundation for
such developments.

3 Statistical Models

Haskell classes were previously defined (Allison 2003a) for models, function mod-
els (regressions) and time-series models. A model can return the probability,
pr, and the negative log probability, n1Pr, of a datum from its data-space. It
can also compute the second-part, msg2, and the total message length, msg, for
a data set. A function model returns a model of its output space conditional on
a value from its input space. A time-series returns models for the elements of a
sequences (list), each one possibly conditional on the previous values. A super-
class, SuperModel, states that they must all returns their own prior probability,
their own message length, msg1, and that each must be able to form a mixture
of instances of itself. They must also be in class Show so that we can see the
answers to inference problems.

class (Show sMdl) => SuperModel sMdl where

prior ::sMdl -> Probability

msgl ::sMdl -> MessageLength

msglBase ::Double -> sMdl -> MessagelLength

mixture ::(Mixture mx, SuperModel (mx sMdl)) => mx sMdl -> sMdl

class Model mdl where
pr ::(mdl dataSpace)->dataSpace->Probability
nlPr ::(mdl dataSpace)->dataSpace->Messagelength
nlPrBase ::Double->(mdl dataSpace)->dataSpace->MessageLength
msg ::SuperModel (mdl dataSpace) =>

(mdl dataSpace)->[dataSpace] ->MessageLength
msgBase ::SuperModel (mdl dataSpace) =>

Double->(mdl dataSpace)->[dataSpace]->MessageLength

msg2 ::(mdl dataSpace)->[dataSpace]->MessageLength
msg2Base ::Double->(mdl dataSpace)->[dataSpace]->MessagelLength

class FunctionModel fm where
condModel ::(fm inSpace opSpace)->inSpace->ModelType opSpace
condPr ::(fm inSpace opSpace)->inSpace->opSpace->Probability
condN1Pr ::(fm inSpace opSpace)->inSpace->opSpace->Messagelength
condN1PrBase ::Double —>
(fm inSpace opSpace)->inSpace->opSpace->MessageLength

class TimeSeries tsm where
predictors ::(tsm dataSpace)->[dataSpace]->[ModelType dataSpacel

prs ::(tsm dataSpace)->[dataSpace]->[Probability]
nlPrs :: (tsm dataSpace)->[dataSpace]->[MessageLength]
nlPrsBase ::Double ->

(tsm dataSpace)->[dataSpace]->[MessageLength]

Useful statistical models, including multi-state, normal and multivariate dis-
tributions, mixture models, Markov models, finite function-models (conditional
probability tables) and classification trees, have been defined and made instances
of the appropriate classes (Allison 2003b). Here, these building blocks are ex-
tended, tested and applied to new inductive inference problems to explore and
illustrate the style of programming.

4 Case Study: Mixtures of Markov Models

The problem of modelling mixtures of Markov models was posed in a tea-room
conversation: Given a population of sequences over a finite (Bounded, Enum)
alphabet (type), is the population a mixture of k>1 sub-populations, each sub-
population being described by its own Markov model? This is unsupervised
classification (clustering) of sequences. An expectation maximization (EM) al-

gorithm, estMixture, had already been defined (Allison 2003a) for mixture
modelling, the “intended” application being over multi-variate data.

Function estMixture requires estimator(s) for the components of the mix-
ture. Such an estimator must deal with weighted data because fractional assign-
ment of data to components is needed to give unbiased estimates. The existing
estimator for Markov models of order-k did not handle weighted data so, for
a proof of concept, a suitable estimator for first-order Markov models was cre-
ated. Given a weighted data set (list) of several sequences, each sequence is
scanned with a copy of itself shifted one position so as to align the previous
and current elements. This gives training pairs from which to estimate a finite
function model, ££, which is the basis of a finite list function model, £1f. The
latter is turned into a time-series model, and thence into a model (which in-
cludes consideration of sequence length) of sequences, by standard conversion
functions:

est_MM1_wtd trainingSeqs weights = -- est 1lst order Markov Model
let scanOneSeq xs w rest =
let scan (i:is) (o:0s) = (i,o,w) : (scan is os)
scan = rest

in scan xs (tail xs)
scanManySeqgs (s:ss) (w:ws)
scanManySeqgs _ _ = [1 -- domne
(ips,ops,ws) = unzip3(scanManySeqs trainingSeqs weights)
ff = estFiniteFunctionWeighted ips ops ws
predictor (x:_) = condModel ff x
predictor [] = uniform (elt minBound) (elt maxBound)
elt x = x ‘asTypeOf‘ (trainingSeqs!!0!!0)
f1f = FM (msgl ff) predictor (\() ->show ff)

in (timeSeries2model.functionModel2timeSeries) flf

scanOneSeq s w (scanManySeqgs ss ws)

e.g. mix2 = estMixture [est_MM1_wtd, est_MM1_wtd] trainSet

The exercise suggests that every time-series estimator should probably work
from a set (list) of sequences rather than a single sequence; it is in any case easy
enough to one thing into a set of things but not vice-versa.

5 Case Study: Stateful Time-Series

As previously defined (Allison 2003a), a time-series model was based on a func-
tion from the context of past values to a model of the next element. It was
well known and quite clear that time-series models could also be defined from
stateful functions and experiments have now been carried out.

data TimeSeriesType’ = ... |
forall state.
TSMs MessageLength

state —-- initial state

(state -> dataSpace -> state) -- state-transition fn
(state -> ModelType dataSpace) -- predict/model next elt’
() -> String) —-- Show it

The new option is made an instance of class TimeSeries in the obvious
way. The type of the state must be hidden as an existential type (foralll)
within TimeSeriesType’; existential types are available in ghc as a type ex-
tension to Haskell-98. If not hidden, the state must be a type parameter to
TimeSeriesType’ and that would make every instantiation a different type,
e.g. putting an end to mixtures of arbitrary time-series models over a given
data-space.

A parameterless time-series model based on the idea of an adaptive code
provides an example. It assumes only that the data are homogeneous and
come from an unknown zero-order source. Counters are kept for the number
of occurrences of each possible value from the start of the sequence up to the
current position. The counters are initialised to one and, together with the
total (for convenience), form the initial state. The state transition function
increments the appropriate counter, and the total. The model at a given position
is derived by turning the frequencies into probability estimates.

adaptive =
let mn = minBound
size = (fromEnum (maxBound ‘asTypeOf‘ mn)) - (fromEnum mn)+1
state0 = (size, replicate size 1) -- initial state
t (total, counts) datum = -- state transition fn
(total+1l,

increment (fromEnum datum -
fromEnum (mn ‘asTypeOf‘ datum)) counts)
p (total, counts) = -- :: state -> model
((modelInt2model mn) . probs2model
(map (/ (fromIntegral total)))) counts
in TSMs 0 stateO t p (\()->"adaptive")

Incidentally, Wallace and Boulton (1968) showed that calculations of the infor-
mation content of a sequence of data, from such a source, under the uninfor-
mative adaptive and “combinatorial” codes give identical results, as one would
hope. And the method which first states an estimate of the probabilities to op-
timal, finite precision gives a total message length which is greater by a fraction
of a bit per parameter, that being the small price of transmitting an opinion.

6 Case Study: Lost Person

Koester’s (2001) lost-person data set has been studied in CSSE, Monash (Twardy
2002, + Hope 2004). There are 363 records, and 15 attributes, numbered 0-14,
but attention has mostly been restricted to the first eight attributes. One hope

N

Figure 1: A Simple Example Network.

Net: [
{CTleaf N(1.0,0.41)(+-0.1),_,_,_,_1}, -- @0 ~ N(1,0.4)
{CTleaf _,mState[0.5,0.5],_,_,_}, --e1
{CTfork @0<|>=1.4[-- @2 | @0,01
{CTleaf _,_,mState[0.99,0.01],_,_3}, -—- 00<1.4
{CTfork @1=False|Truel -— @0>=1.4
{CTleaf _,_,mState[0.98,0.02],_,_1}, -—- @1 = False
{CTleaf _,_,mStatel[0.02,0.98]1,_,_}1}1}, -- @1 = True
{CTleaf _,_,_,mState[0.5,0.5],_}, -- @3, independent
{CTfork @2=Falsel|Truel -- 04 | @0, @2
{CTfork @0<|>=1.0[-— @2=False
{CTleaf _,_,_,_,N(0.55,0.2)(+-0.1)}, -- @ < 1.0
{CTfork @0<|>=1.4[-— @0 >= 1.0
{CTleaf _,_,_,_,N(1.0,0.2)(+-0.1)}, -- @0 [1.0,1.4)
{CTleaf _,_,_,_,N(1.45,0.2)(+-0.1)}1}13}, -- Q@0 >= 1.4
{CTleaf _,_,_,_,N(3.45,0.2)(+-0.1)}]1} -- ©@2=True
]

Figure 2: Trees in the Nodes of the Simple Example Network.

is to be able to predict distance travelled, DistIPP attribute 7, from attributes
zero to six.

A Bayesian network is an appropriate tool to investigate relationships amongst
the various attributes. Friedman and Goldszmidt (1996) suggested using decision-
trees, i.e. classification trees, in place of the usual conditional probability tables
(CPTs) within the nodes of such networks. A classification tree can “become”
a full CPT in the limit but can be much more economical, that is less complex,
in many cases. We just happen to have a general MML classification tree, in
Haskell, and it can also test continuous attributes, and can have discrete or con-
tinuous distributions, or even regressions, in the leaves (Allison 2003a). Comley
and Dowe (2003) have also used trees within the nodes of networks.

Figure 1 shows an example of a simple network inferred for an artificial data
set having five attributes. A node represents an attribute. An edge represents
a (direct) conditional dependence of a “child” on a “parent” and, in a suitable
context, relates to causality. In the example, attribute 2 is conditionally depen-
dent on attributes 0 and 1, attribute 3 is independent of the other attributes,
and so on. Figure 2 shows the classification trees for all the network nodes.
Each tree consists of fork-nodes, CTfork, and/or leaf-nodes, CTleaf, which are
not to be confused with the network’s nodes. A fork tests a parent attribute
value and a leaf models the appropriate child attribute. A test on a discrete
attribute is shown as e.g. @2=False|True, etc.. A test on a continuous attribute
is shown as e.g.@0<|>=1.4, i.e. less than or greater than or equal to 1.4, etc..
The multi-state distribution, mState, is used to model a discrete attribute, and
the normal distribution, N(m,s)(a), of mean m, standard deviation s and data
measurement accuracy ‘a’, is used to model a continuous attribute.

The remainder of this section describes how Haskell can be used to investi-
gate the lost-person data. The application serves as an example to illustrate the
composition of statistical models: multi-state and normal distributions within
classification trees within a Bayesian network.

6.1 Data

The first step is to define the attribute types in the (slightly simplified) data
set:

data Tipe = Alzheimers| Child| Despondent|
Hiker| Other| Retarded| Psychotic
deriving (Eq, Enum, Read, Show, Bounded)
type Age = Double
data Race = White | Black
deriving (Eq, Enum, Read, Show, Bounded)
data Gender = Male | Female
deriving (Eq, Enum, Read, Show, Bounded)
data Topography = Mountains | Piedmont | Tidewater
deriving (Eq, Ord, Enum, Read, Show, Bounded)
data Urban = Rural | Suburban | Urban

deriving (Eq, Ord, Enum, Read, Show, Bounded)
type HrsNt = Double -- hours notified
type DistIPP = Double -- distance

Haskell’s standard Prelude (Peyton Jones et al 1999) instantiates tuples, up
to 7-tuples, in classes Read and Show, so the 15-tuples here need to be made
instances of those classes for input and output respectively. This is an easy, if
tedious, job and could in principle be automated in template Haskell (Sheard
and Peyton Jones 2002), say.

The model needs to split, i.e. partition, the data on various attribute values
(Allison 2003b, 2004) for the benefit of the classification trees.

class Splits t where
splits :: [t] -> [Splitter t]

data Splitter t = Splitter Int (t -> Int) (() ->String)
-- i.e. arity partition_fn description

A continuous, ordered (0rd), attribute, such as Age, is split on being < or
> some value. A discrete, i.e. Bounded, enumerated (Enum), attribute, such as
Gender, of a k-valued type is usually split into k subsets, as defined by splitsBE.
However Topography and Urban are Bounded, enumerated and ordered (0Ord),
so we also have the options of splitting each into two subsets on the basis of
order, as defined by splitsOrd:

instance Splits Tipe where splits = splitsBE
instance Splits Race where splits = splitsBE
instance Splits Gender where splits = splitsBE
instance Splits Topography where splits = splitsBE --or splitsOrd
instance Splits Urban where splits = splitsBE --or splitsOrd

The question of which distribution, and therefore which estimator, to use
for each attribute now arises. The standard estimator for the normal (Gaus-
sian) distribution uses a uniform prior on the mean and an inverse prior on the
standard deviation and requires their ranges, and also the data measurement
accuracy:

e0 = (estModelMaybe estMultiState) -- Tipe

el = (estModelMaybe (estNormal 0 90 1 70 0.5)) -- Age

e2 = (estModelMaybe estMultiState) -- Race

e3 = (estModelMaybe estMultiState) -- Gender

e4 = (estModelMaybe estMultiState) -- Topography
eb = (estModelMaybe estMultiState) -- Urban

e6 = (estModelMaybe (estNormal O 200 1 100 0.5))

e7 = (estModelMaybe (estNormal O 50 0.5 30 0.2)) -- DistIPP

Finally the individual estimators are assembled into a composite that matches
a data tuple; all 15 component distributions are defined by the estimator but
lazy evaluation ensures that only the selected eight, say, are evaluated.

estimator = estVariatelb e0 el e2 e3 e4 eb e6 e7
e8 e9 el0 ell el2 el3 el4d

Function estVariatel5 estimates a 15-variate probability distribution which is
an instance of class Project — a standard piece of inductive inference machinery.
An instance, t, of Project is some multi-dimensional type for which a list of
Boolean flags can be used to restrict t to certain selected dimensions. The
non-selected dimensions must behave in a trivial, “identity” manner that is
appropriate to type t. In the case of a Model this is to return zero message
length, probability one, for non-selected attributes.

class Project t where
select :: [Bool]l >t -> t
selAll :: t -> [Bool]l -- all True flags

A class Splits was previously defined for partitioning data — discrete, con-
tinuous or multi-variate. A class Splits2, inspired by Project, is now defined
(it could equally well be folded into Splits) to allow splitting on selected at-
tributes:

class Splits2 t where
splitSelect :: [Bool] -> [t] -> [Splitter t]

The situation for adding k-ary types to class Project, or k-tuples to Splits2,
is similar to that for k-tuples with respect to classes Read and Show.

6.2 Missing Data

The lost-person data set is “difficult” because it contains, or perhaps it is better
to say does not contain, many missing values. Many data have at least one
missing value, and some have several. Every attribute is missing in some datum.
Haskell has the ideal type to represent possibly missing values: Maybe. And
high-order functions are used to define succinct operators to extend arbitrary
statistical models to cover possibly missing values.

The function modelMaybe is a good example of a high-order function on
models. It turns an arbitrary model, m2, of non-missing data, t, into the cor-
responding model of Maybe t where the value may be missing. It requires a
model, m1, of Bool of whether the data is present (True) or missing (False).

modelMaybe m1 m2 =
let neglogPr (Just x) = (nlPr ml True) + (nlPr m2 x)
neglogPr Nothing = nlPr ml False
in MnlPr (msgl ml + msgl m2) neglogPr
. show method omitted ...

10

o

Figure 3: Lost Person Network.

There is a related estimator, estModelMaybe, which turns an estimator of
non-missing data into the corresponding estimator where the data may include
missing values:

estModelMaybe estModel dataSet =
let present (Just _) = True
present Nothing = False
ml = uniformModelOfBool
m2 = estModel (map (\(Just x) -> x) (filter present dataSet))
in modelMaybe ml m2

In the present application the missing-ness of values is certainly non-random
for some attributes, for example Age is often omitted for cases of Hiker: : Tipe.
However, we are not interested in modelling missing-ness so a fixed 50:50 model,
ml, is used above to “predict” missing (Nothing) or present (Just...). To
estimate missing-ness, the following definition is used:

ml = estMultiState (map present dataSet)

Missing values also affect splits, i.e. partitions of the data. A simple strategy
is for the attribute to be split as for the underlying type but with an extra option
for Nothing cases:

maybeSplitter (Splitter n f d) =
let £’ Nothing =n

11

£’ (Just x) = f x -- Just x, as x was, 0..n-1
in Splitter (n+1) £> (\(Q) -> "("++d()++"[?)") -- NB arity n+l

More complex strategies, not examined here, could try to predict in various
ways what the missing value, or its distribution, really is and act on that.

6.3 The Mixed Bayesian Network Model

The function, estNetwork, for inferring a network needs to be given a permu-
tation, a total ordering, of those attributes that are to be considered; it would
be straightforward to search over permutations, heuristically if there were many
attributes, but the simple algorithm does not do this and the permutation is
taken to be common knowledge.

estNetwork perm estMV dataSet =

let
n = (length . selAll) (estMV [])
search _ [] = [1 -- done
search ps (c:cs) = -- parents, ps, predict children, c:cs
let
opFlag = ints2flags [c] n -- identify the child ...
ipFlags = ints2flags ps n -- ... and the parents
cTree = estCTree (estAndSelect estMV opFlag) -- leaf est’
(splitSelect ipFlags) -- tests
dataSet dataSet - !
in
cTree : (search (c:ps) cs) -- i.e. a list of trees
trees = search [] perm
msglen = sum (map msgl trees) -- total complexity
nlP datum = sum (map (\t -> condN1Pr t datum datum) trees)
in MnlPr msglen nlP (\() -> "Net:" ++ (show trees)) -- Net’

The algorithm above uses the estimator for classification trees (Allison 2003a),
estCTree, to do most of the work. The remainder consists of organising selector
flags corresponding to allowed parents for the current node’s child. Note that the
dataSet seems to be passed to estCTree twice — as both input and output at-
tributes, but auxiliary functions ints2flags, estAndSelect and splitSelect,
use the flags to cause the child to be predicted (output) by the estimator and
the parents to be used for splitting (input) as appropriate at each network node.

Cause and effect dictate that Age, Race and Gender cannot, in a causal sense,
depend on other attributes and should come first, in some order, say [1,2,3].
Tipe probably depends on them, e.g. there are few young Alzheimers cases.
Topography and Urban can sensibly come next, and one expects a relationship
between them. That leaves HrsNt and finally DistIPP to make up a plausible
ordering, [1,2,3,0,4,5,6,7]. There is also a natural null hypothesis which models
the attributes independently:

12

dataSet = read (readFile dataFile) :: [MissingPerson]
nw = estNetwork [1,2,3,0,4,5,6,7] estimator dataSet
nullModel = estimator dataSet

Figure 3 shows the network inferred with an abridged node listing in figure 4.
Tipe, attribute 0, is dependent on Age, Gender and Race. As expected, Urban
is dependent on Topography. There is some direct dependence of DistIPP on
HrsNt, and of the latter on Age, but there seems to be no strong predictor of
DistIPP from other attributes. The model is significant, with a total two-part
message length of 5512 nits against 5936 nits for the null model. Other analyses
were tried, for example using ordered (0rd) splits on Topography and Urban, in
place of Bounded Enum splits; the conclusions were much the same.

7 Conclusions

Functional programming’s compositional style and Haskell’s features have a
number of advantages in inductive inference. Mapping a data set, such as lost-
persons, onto the Haskell type system is a useful exercise in getting to know the
data, very precisely. The necessity to define an attribute’s properties, e.g. 0rd or
not, automatically suggests what is possible, e.g. to split Topography as discrete
or as ordered (6.1). These things cannot be forgotten; the type and class system
insists on bringing them to your attention.

In-built support for wide tuples, (,), would make it easier to deal with
typical multi-variate data sets, although template Haskell is a possible solution.

High-order functions, such as modelMaybe (6.2), are invaluable in creating
new ways of using arbitrary models. The polymorphic type system ensures that
the uses are general and remain type safe.

It is a common experience that polymorphic types often show a function to
be more general than its programmer realised, e.g. the EM algorithm (4) applies
to sequences not just to multivariate data.

Lazy evaluation means, for example, that only models of the selected at-
tributes of lost-persons (6.1) are evaluated. Selections are made once at the top
level, most of the algorithms do not “consider” the matter at all.

Computing model complexity by minimum message length (MML,2) is a
good match with the compositional style of functional programming. The reader
may hardly have noticed any explicit message length calculations. They are
there in modelMaybe, for example, and are being passed around in the com-
plexity of the network (6,6.3) and its classification trees (fig. 4) to direct the
search.

A specific model can be created quickly to suit a new problem (4,5,6) thanks
to Haskell’s expressive power. Of course it cannot be claimed that the types
and type classes for statistical models are of the best possible designs, e.g. a
case can be made for specifying the notion of a data set; perhaps data traversal,
data measurement accuracy and data weights should be wrapped up in suitable
types and classes. Only experience, and time, will let us settle on the “best”

13

Net: [
@1, Age:
{CTleaf _, (Maybe 50:50,N(40.6,27.5)(+-0.5)),...},

@2, Race:
{CTleaf _,_, (Maybe 50:50,mState[0.66,0.34]),...},

@3, Gender:
{CTleaf _,_,_,(Maybe 50:50,mState[0.72,0.28]),...},

@0, Tipe:
{CTfork @1(<[|>=19.0|?)[...uses @1, @2, @3... 1},

@4, Topography:

{CTleaf _,_,_,_, (Maybe 50:50,mState[0.17,0.52,0.31]1),...},

@5, Urban:

{CTfork @4(=Mountains..Tidewater|?)[
{CTleaf _,_,_,_,_, (Maybe 50:50,mState[0.93,0.04,0.041),...3},
{CTleaf _,_,_,_,_, (Maybe 50:50,mState[0.70,0.19,0.111),...3},
{CTleaf _,_,_,_,_,(Maybe 50:50,mState[0.38,0.02,0.6 1),...},
{CTleaf _,_,_,_,_,(Maybe 50:50,mState[0.73,0.2 ,0.07]1),...}1},

@6, HrsNt:

{CTfork @1(<|>=62.0|7)[
{CTleaf _,_,_,_,_,_,(Maybe 50:50,N(8.7, 7.6)(+-0.5)),...},
{CTleaf _,_,_,_,_,_,(Maybe 50:50,N(21.4,26.3) (+-0.5)),...},
{CTleaf _,_,_,_,_,_,(Maybe 50:50,N(20.0,...1-case...),...}]},

@7, DistIPP:

{CTfork @6(<|>=1.017)[
{CTleaf _,_,_,_,_,_,_,(Maybe 50:50,N(...no-cases...),...},
{CTleaf _,_,_,_,_,_,_,(Maybe 50:50,N(0.59,0.6) (+-0.2)),...},
{CTleaf _,_,_,_,_,_,_,(Maybe 50:50,N(1.52,2.8)(+-0.2)),...}1}]

network: 115.1 nits, data: 5396.6 nits
null: 5935.6 nits (@0..Q7)

Figure 4: Trees in the Nodes of the Lost Person Network.

14

trade-off between generality, usability and efficiency. The lost-person case study
took one and a half days to create, including how to handle missing data which
had previously been in the “must think about that one day” category.

References

[1] Allison, L. (2003a) Types and classes of machine learning and data mining.
26th Australasian Computer Science Conference (ACSC), Adelaide, pp. 207-
215, Feb 2003.

[2] Allison, L. (2003b) Inductive inference 1. TR 2003/148, School of Computer
Science and Software Engineering, Monash University.

[3] Allison, L. (2004) Models for machine learning and data mining in functional
programming. J. Functional Programming, to appear.

[4] Allison, L.; Powell, D. and Dix, T. I. (1999) Compression and approximate
matching. BCS Comput J., 42 (1), pp. 1-10.

[5] Bayes, T. (1763) An essay towards solving a problem in the doctrine of
chances. Phil. Trans. of the Royal Soc. of London, 53, pp. 370-418. Reprinted
in Biometrika 45(3/4), pp. 296-315, 1958.

[6] Comley, J. and Dowe, D. L. (2003) General Bayesian networks and asym-
metric languages. Hawaii Int. Conf. Statistics and Related Fields (HICS-2),
June 2003.

[7] Farr, G. E. and Wallace, C. S. (2002) The complexity of strict minimum
message length inference. BCS Comput. J., 45 (3), pp. 285-292.

[8] Friedman, N. and Goldszmidt, M. (1996) Learning Bayesian networks with
local structure. UAT’'96, pp. 252—-262.

[9] Georgeff, M. P. and Wallace C. S. (1984) A general selection criterion for
inductive inference. European Conf. on Artificial Intelligence (ECAI84), Pisa,
pp. 473-482, September 1984. A longer version is available as Wallace, C. S.
and Georgeff, M. P. (1983) A general objective for inductive inference. TR 32,
Department of Computer Science, Monash University.

[10] Koester, R. J. (2001) Virginia dataset on lost-person behaviour. Author’s
site http://www.dbs-sar.com/.

[11] Peyton Jones, S. et al (1999) Report on the Programming Language
Haskell-98. http://www.haskell.org/

[12] Peyton Jones, S.; Eber, J.-M. and Seward J. (2000) Composing contracts:
an adventure in financial engineering. Proc. 5th Int. Conf. on Functional
Programming, Montreal, pp. 280-292.

15

[13] Shannon, C. E. (1948) A mathematical theory of communication, Bell Syst.
Technical Jrnl., 27: pp. 379-423 and pp. 623—656.

[14] Sheard, T. and Peyton-Jones, S. (2002) Template meta-programming for
Haskell. Proc. of the workshop on Haskell, ACM, pp. 1-16.

[15] Twardy, C. R. (2002) SARbayes: Predicting lost person behavior. Pre-
sented to the National Association of Search and Rescue (NASAR 2002),
Charlotte, NC. http://sarbayes.org/nasar.pdf

[16] Twardy, C. R. and Hope, L. R. (2004) Missing data on missing persons.
Submitted.

[17] Van Deursen, A.; Lint P. and Visser, J. (2000) Domain-specific languages:
An annotated bibliography. ACM SIGPLAN Notices, 35 (6), pp. 26-36.

[18] Wallace, C. S. and Boulton, D. M. (1968) An information measure for
classification. BCS Comput. J., 11 (2), pp. 185-194.

[19] Wallace, C. S. and Freeman, P. R. (1987) Estimation and inference by
compact coding. J. Royal Statistical Society series B., 49 (3), pp. 240-265.

16

