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Abstract

Inductive programming is a new machine learning
paradigm which combines functional programming
for writing statistical models and information theory
to prevent overfitting. Type-classes specify general
properties that models must have. Many statistical
models, estimators and operators have polymorphic
types. Useful operators combine models, and esti-
mators, to form new ones; Functional programming’s
compositional style of programming is a great advan-
tage in this domain. Complementing this, informa-
tion theory provides a compositional measure of the
complexity of a model from its parts.

Inductive programming is illustrated by a case
study of Bayesian networks. Networks are built from
classification- (decision-) trees. Trees are built from
partitioning functions and models on data-spaces.
Trees, and hence networks, are general as a natural
consequence of the method. Discrete and continuous
variables, and missing values are handled by the net-
works. Finally the Bayesian networks are applied to
a challenging data set on lost persons.

Keywords: inductive inference, functional program-
ming, Haskell, minimum length encoding, statistical
models, Bayesian networks.

1 Introduction

The paper describes inductive programming (IP) a
new paradigm for quickly writing succinct solutions
to inductive inference problems from machine learn-
ing. Solutions take the form of statistical models and
their estimators: Given particular data, infer a gen-
eral model from the data; the data are invariably
noisy. IP uses functional programming to program
models and estimators, and the information theoretic
criterion, minimum message length (MML), to pre-
vent over-fitting.

Much research in machine learning involves devis-
ing a new kind of statistical model and implementing
a program to learn (infer, fit, estimate) a model given
data. The resulting stand-alone programs are often
hard to modify and to combine with others to im-
plement new statistical models. To address this, IP
defines types and classes of statistical models and the
properties that instances, that is particular models,
must have and provides a library of such instances.
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Given the huge variety of problems in general-
purpose computing, the chances of having a ready-
made program that already solves some new prob-
lem is small. Things are no different in inductive
inference so it is useful to have a way of creating
new solutions, quickly and easily. Programming lan-
guages exist to make it easier to write new solu-
tions in general computing. One could devise a spe-
cial purpose programming language for inductive in-
ference and examples exist, sometimes as a “script-
ing” language as distinct from the main “implemen-
tation” language in a data analysis platform such as
R (CRAN 2004) and S-Plus (Crawley 2002). But
such scripting languages are often interpreted and
lack compile-time type checking. Instead IP uses an
existing general purpose functional programming lan-
guage that is compiled and has a strong type system
— Haskell (Peyton-Jones et al 1999). Haskell is a good
choice (Allison 2005) for the domain because it is ex-
pressive and has a powerful system of polymorphic
types and type-classes; it is good programming lan-
guage technology. Functional programming encour-
ages the composition of functions, and polymorphic
types lead to general solutions; this makes for short
and general programs. We see these benefits rubbing-
off on statistical models when they are transformed
and composed.

Previous work on IP (Allison 2003) created ba-
sic but useful statistical models, estimators and func-
tions. The present paper shows how they can be ex-
tended, composed and tailored quickly to suit a new
problem, and used as parts of a new model. Many
models and associated functions are polymorphic; a
good type and class system reveals their true general-
ity. Statistical models and functions on them can be
very general — any computable model inferred from
almost any type of data by an arbitrary algorithm.

Over-fitting is a well known problem in machine
learning. William of Occam argued long ago that
an explanation should be kept simple unless necessity
dictates otherwise. A computer program doing induc-
tive inference must address model complexity in some
way. In particular, if sub-models are to be composed
to make new models, the complexity of the parts and
the whole must be dealt with. Later we will see basic
models used within models of missing data which are
used within classification trees which in turn are used
within Bayesian networks. With its compositional na-
ture, minimum message length (MML) (section 2.1)
inference (Wallace & Boulton 1968, Wallace 2005) is
a natural partner for functional programming in ma-
chine learning.

The questions that are raised, and that are be-
ing answered as IP develops, include: what are the
types and classes of statistical models, what can be
done to them, and how can they be transformed and
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Figure 1: Message Paradigm

combined? Depending on one’s background and in-
clination, IP can be seen as a software engineering
analysis of machine learning, as a compositional de-
notational semantics of statistical models, as an ap-
plication of functional programming, or as an embed-
ded language (van Deursen, Lint & Visser 2000). The
Haskell code produced could also be seen a rapid pro-
totype for other data analysis platforms.

The next section covers background material. Af-
ter that inductive programming (IP) is illustrated by
a case study of Bayesian networks. The Bayesian
networks are then applied to a data set of lost per-
sons (Koester 2001). It is a challenging data set of
363 records and 15 variables, half of them missing on
average. It shows the kind of problem that typically
pops up with real data, if any data set can be said to
be typical.

Bayesian networks form a case study; the main
aim of the paper is to show how a new statistical
model can be programmed quickly to suit a new prob-
lem. It explores IP’s expressiveness not the statisti-
cal performance of any particular model(s). If IP and
some other system have equivalent models then those
models will, in principle, behave roughly equivalently.
Rather the point is to show how IP can be used to
create a new model to suit a new inference problem,
as opposed to “massaging” the problem to suit some
existing model.

All code shown is Haskell-98 (Peyton-Jones et al
1999) in the interests of standardization and has been
compiled under the Glasgow Haskell Compiler, ghc,
version 6.0.1.

2 Background

For completeness, this section briefly introduces
MML and IP’s main type-classes.

2.1 MML

Minimum message length (MML) (Wallace & Boulton
1968, Wallace 2005) builds on Shannon’s mathemati-
cal theory of communication (1948), hence ‘message’,
and on Bayes’s theorem (Bayes 1763):

Pr(M&D) = Pr(M) .Pr(DIM) = Pr(D).Pr(M|D)
msglen(E) = -log(Pr(E))
msgLen (M&D)

= msgLlen (M) +msgLen(D|M)
= msglen (D) +msgLen(M|D)

where M is a model (theory, hypothesis, parameter
estimate) of prior probability Pr(M) over some data,
D, and E is an event of probability Pr(E). MsgLen(E)
is the length of a message, in an optimal code, an-
nouncing E; the units are nits for natural logs, bits
for base 2 logs.

MML notionally considers a transmitter sending a
two-part message to a receiver (figure 1). The first
part, of length msgLen(M), states a model which is
an answer to some inference problem. The second
part, msgLen(D|M), states the data encoded as if the
answer, M, is true; note that the receiver cannot de-
code the second part without the first part. There is
a trade-off between the complexity of the model, M,
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Figure 2: Classes and Conversions

and its fit to the data, D|M: A simple model is cheap
to state but may not fit the data well. A complex
model may fit the data better but is more expensive to
state (Georgeff & Wallace 1984). In some simple cases
MML is equivalent to maximum aposteriori (MAP)
estimation but this is not true in general (Wallace &
Freeman 1987, Farr & Wallace 2002). For example, if
one or more continuous parameters are involved they
must be stated to finite, optimal precision, and MML
shows how to do this. Note that a one-part message
can be very slightly more efficient in transmitting D
but it does not offer an explanation of D; it does not
state an answer to an inference question.

MML (Wallace & Boulton 1968) is related to
the minimum description length (MDL) princi-
ple (Rissanen 1978). The former aims to select a
parameterized model — the parameters being stated
to optimal precision — and embraces explicit priors.
The latter aims to select a model-class and favours
universal distributions and implicit priors. MML
and MDL have been featured in the Journal of the
Royal Statistical Society (Wallace & Freeman 1987,
Rissanen 1987) and in a special issue of the Computer
Journal on Kolmogorov complexity (Gammerman
& Vovk 1999). Oliver and Baxter (1994, p. 24)
made a direct comparison and concluded that only
MML (Wallace & Freeman 1987) had all the desir-
able properties of invariance under non-linear trans-
formations of parameters, of applicability to large and
small samples (not only asymptotic), and of making
a definite inference.

Strict MML (SMML) relies on the design of a full
optimal code book. Unfortunately SMML is infea-
sible for most inference problems (Farr & Wallace
2002). Fortunately there are efficient, accurate MML
approximations for many useful problems and mod-
els (Wallace 2005).

MML is a natural compositional criterion because
the complexity of data, models and sub-models are
all measured in the same units. “[It is possible] to
use [message] length to select among competing sub-
theories at some low level of abstraction, which in
turn can form the basis (i.e., the ‘data’) for theories
at a higher level of abstraction. There is no guar-
antee that such an approach will lead to the best
global theory, but it is reasonable to expect in most
natural domains that the resulting global theory will
at least be near-optimal” (Wallace & Georgeff 1983).
MML’s compositional nature is a good fit with func-
tional programming’s compositional style of program-
ming. This is illustrated in the Bayesian network case
study of section 3. MML has been used to assess the
complexity of combined models of some specific types
(e.g. Allison et al (1999) and Powell et al (2004))



class ... SuperModel sMdl where
prior :: sMdl -> Probability
msgl : sMdl -> MessageLength
mixture :: . mx sMdl -> sMdl

class Model mdl where

pr :: (mdl dataSpace) ->

dataSpace -> Probability

(mdl dataSpace) ->

dataSpace -> MessagelLength

msg :: ... (mdl dataSpace) ->
[dataSpace] -> MessagelLength

(mdl dataSpace) ->

[dataSpace] -> MessagelLength

nlPr ::

msg2 ::

class FunctionModel fm where

condModel :: (fm inSpace opSpace) ->
inSpace -> ModelType opSpace
‘...7 stands for omitted details, ‘::’ for ‘has type’,

‘[t]’ for list of a type t’, and ‘->’ for function type.

Figure 3: Classes of Statistical Model

but its full programming potential has only recently
started to be studied (Allison 2003). A functional
programming language with a parametric polymor-
phic type system is a sound foundation for such a
study.

2.2 Types and Classes of Statistical Models

We want to be able to program as large as possi-
ble a set of things that people call statistical models
and yet have the set clean, orthogonal and built on a
small foundation. For simplicity, we also want a small
collection of just their essential properties. Here sta-
tistical model is taken to cover things that assign ex-
plicit probabilities to data. Haskell type-classes (fig-
ures 2, 3) Model, FunctionModel and TimeSeries
were previously defined (Allison 2003, Allison 2005)
for basic models (distributions), function-models (re-
gressions) and time-series models; the first two are
used in the following case study.

A basic Model, mdl (figure 3), can return the prob-
ability, pr, and the negative log probability, n1Pr, of
a datum from its data-space. It can also compute
the second-part, msg2, and the total two-part mes-
sage length, msg (section 2.1), for a data set. We are
only concerned with the most important properties
here; a statistical model might be able to do several
other things.

Note that in Haskell t->u denotes the function
type with input type t and output type u. A data
set over a data-space ds has the type [ds], that is
‘list of ds.” For example, the pr operator of class
Model (figure 3) has the type (mdl dataSpace) ->
dataSpace -> Probability. That is, given a model
over the dataSpace and a datum from the dataSpace
return the probability of the datum.

A function-model has an input-space (exogenous
variables) and an output space (endogenous vari-
ables). Its principal ability is to return a model of
its output space conditional, condModel, on a value
from the input space.

A super-class, SuperModel, states that an instance
of one of the various sub-classes must return its own
prior probability and message length, msg1, and that
it must be able to form mixtures; it must also be
in the standard class Show so that we can print the
answers to inference problems.
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Some types are provided for models to be built
in standard ways: Type ModelType is an instance of
type-class Model, and types FunctionModelType and
CTreeType (classification tree type) are instances of
type-class FunctionModel.

Operators are defined to implement familiar laws
of probability. For example, assuming that variables
over the data-spaces ds1 and ds2 are independent,
bivariate m1 m2 forms a model of the product data-
space, (ds1, ds2), from m1, a model of ds1, and m2,
a model of ds2. For the case where ds2 is condi-
tionally dependent on dsi, condition ml fm forms
a model of (ds1, ds2) from ml, a model of dsi,
and fm, a function-model from ds1 to ds2. There
are related operators on estimators — estBivariate,
estCondition and so on. Many of these operators are
polymorphic in that their types contain type variables
such as ds1 and ds2.

Useful statistical models, including multi-state, in-
teger, normal and multi-variate distributions, mixture
models, Markov models, finite function-models (con-
ditional probability tables) and classification trees,
have been defined and made instances of the appro-
priate classes. Below, these building blocks are ex-
tended, tested and used in a case study of Bayesian
networks to explore and illustrate IP.

Figure 4: Example Network.

3 Case-Study: Bayesian Networks

A Bayesian network (Korb & Nicholson 2004) is a
good tool to investigate relationships among the vari-
ables of a data set. A Bayesian network is a directed
acyclic graph. A node represents a variable. An edge
represents a direct conditional dependence of a child
on a parent and, in a suitable context, has a causal
interpretation. Creating and applying an estimator of
the structure and parameters of a Bayesian network
forms our case study to illustrate IP — a network is
a non-trivial tool and implementing one provides a
good test of a system’s expressive power. A Bayesian
network is in class Model (section 2.2) and can as-
sign a probability to a data tuple; belief updating
was not required by the application and has not been
implemented. Figure 4 shows an example Bayesian
network in which variable 2 is a child of variables 0
and 1 and is a parent of 4, variable 3 has no rela-
tionship to the other variables, and so on. It happens
that variables 0 and 4 are continuous and variables 1,
2 and 3 are discrete.

Friedman and Goldszmidt (1996) first suggested
using decision-trees (classification trees), in place of
the full conditional probability tables (CPTs) often
used within the nodes of networks over discrete vari-



ables; Comley and Dowe (2003) have also used trees
within the nodes of networks. A classification tree can
“become” a full CPT in the limit but can be much
more economical, that is less complex, in many cases.

It happens that previous work created a rather
general classification tree algorithm (Allison 2003,
Allison 2005). The tree’s type is an instance of class
FunctionModel. Such a tree can test arbitrary vari-
ables — discrete, continuous, multi-variate, sequence —
from its input space and can have arbitrary distribu-
tions over its ouptut space, or even function-models
(regressions), in the leaves. These possibilities follow
naturally from IP’s exploitation of Haskell’s polymor-
phic type system. The classification tree is reused
here as the basis of our new Bayesian networks; also
see section 3.7. Each classification tree consists of at
least one leaf-node, CTleaf, and possibly also fork-
nodes, CTfork. These tree-nodes are not to be con-
fused with the network’s nodes; there is one tree per
network node. The classification tree type is an in-
stance of the class FunctionModel (section 2.2). A
fork tests a parent (input) variable value. A leaf
models the appropriate child (output) variable. Typ-
ically the multi-state distribution, mState, models a
discrete variable, and the normal distribution models
a continuous variable but other distributions can be
used if desired because the tree estimator is parame-
terized by the leaf estimator. MML gives a trade-off
between the complexity of a tree and its fit to the
data and this is used to control the search. Note that
when used within a node in a Bayesian network, one
or more tests on a parent variable in a tree indicate
a parent-child dependency, an edge, at the network
level.

The following sections describe the application of
Bayesian networks to lost person data. As an example
of IP it shows the composition of statistical models:
Multi-state and normal distributions within models
of missing data within classification trees within a
Bayesian network. Some new generic features were
required to handle this data set. Any of those fea-
tures may exist in some other data analysis platform,
perhaps this is true of all of them, but it is unlikely
that they all exist in the same platform, and unlikely
that such a platform could be as easily adapted to
further new features. The point is to investigate how
eagsy it is to adapt IP to a new task. This is important
because it often seems that every data set has its own
oddities as one gets to know it.

3.1 Application of Bayesian Networks: Lost
Person

Koester’s (2001) lost person data set has been ex-
amined in CSSE, Monash (Twardy 2002, Twardy &
Hope 2004). Here it provides an application of the
Bayesian network case study. There are 363 records,
and 15 variables, numbered 0-14. Approximately half
of the variable values are missing overall. Attention
is sometimes restricted to the first eight variables;
one aim is to predict distance travelled, Dist IPP vari-
able 7, from variables zero to six. In general, workers
want to have an “explanation” of the data; the struc-
ture and parameters of a network are a good start.

3.2 Describing the Data

The first step in the application is to define the vari-
able types in the lost person data set; in Haskell this
is done quite naturally as:

data Tipe = Alzheimers| Child| Despondent |
Hiker | Other| Retarded|
Psychotic deriving ...

Double

type Age

data Race = ...

data Gender = ...

data Topography = Mountains| Piedmont |
Tidewater
deriving (Ord, Enum, Bounded,...)

data Urban = Rural | Suburban | Urban
deriving (Ord, Enum, Bounded,...)

type HrsNt = Double -- hours notified
type DistIPP = Double -- distance
type MissingPerson =

(Maybe Tipe, Maybe Age, ... )

The Haskell keyword ‘deriving’ directs the compiler
to add a new data type, for example Topography, to
standard Haskell classes such as Ord (ordered), Enum
(enumerated) and Bounded.

Missing values are an issue and are represented
by Maybe t where Maybe t = Nothing | Just t is
a standard Haskell type with parameter t; also see
section 3.6.

A datum, a lost person, is a tuple of the compo-
nent variables. Haskell’s standard Prelude (Peyton-
Jones et al 1999) instantiates tuples, up to 7-tuples,
in classes Read and Show, so the 15-tuples here need
to be made instances of those classes for input and
output respectively. This is an easy, if tedious, job
and could in principle be automated in template
Haskell (Sheard & Peyton-Jones 2002), say.

3.3 Modelling the Variables

The question of which distribution, and therefore
which estimator, to use for each variable now arises.
The standard estimator for the normal (Gaussian)
distribution uses a uniform prior on the mean and an
inverse prior on the standard deviation and requires
their ranges, and also the data measurement accu-
racy. Note that the multi-state distribution and its
estimator are polymorphic, being applicable to any
bounded enumerated data-space (type).

e0 = estModelMaybe estMultiState -- Tipe
el = estModelMaybe (estNormal 0 90 1 70 0.5)

Function estModelMaybe was quickly created to al-
low for missing values in a variable; it is discussed in
section 3.6.

Finally the individual estimators are assembled
into estMissingPerson, a composite that matches
a data tuple.

3.4 Partitioning Data Spaces: Class Splits

A classification tree, as used in a node of a Bayesian
network, operates by splitting, that is partitioning, a
data set from its input space by tests on input vari-
ables; a Splitter partitions a data set. In this way
the data are directed into subtrees and eventually into
leaves where the output variable(s) can be well mod-
elled. Function splits of class Splits (Allison 2003)
proposes, in order of decreasing prior probability,
Splitters for use by the classification tree estima-
tor, estCTree.

class Splits ds where
splits :: [ds] -> [Splitter ds]

The current tree estimator uses a simple zero-
lookahead algorithm in the search to balance tree
complexity (msgl) against fit to the data (msg2).

A multi-variate input space is, by default, split
by splitting on one of its component variables. To
implement this, the ways of splitting the components
are interleaved for consideration in turn.



A continuous ordered (0rd) variable, such as Age,
is split on being < or > some value. By default
splitsOrd proposes values as follows: Median, quar-
tiles, octiles, and so on (Wallace & Patrick 1993).

A discrete, Bounded, enumerated (Enum), variable,
such as Gender, of a k-valued type is conventionally
split into k parts, as defined in the obvious way by
function splitsBE. However Topography and Urban
are instances of the standard Haskell classes Bounded,
Enum (enumerated) and also 0rd (ordered), as can be
seen from their definitions, so we also have the options
of splitting each of them into two parts on the basis
of order, as covered by splitsOrd:

instance Splits Tipe where
splits = splitsBE

instance Splits Topography where
splits = splitsBE
-- or alternatively = splitsOrd

instance Splits Urban where
splits = splitsBE
-- or alternatively = splitsOrd

Yet another alternative was also implemented and
tested for lost persons: Tipe has seven values and
high-arity, un-ordered, discrete types like Tipe can
cause difficulties to function-models because of the
large number of cases and the few data in some or
all of them. If some cases are thought to behave in
similar ways then, rather than using splitsBE, values
can be grouped into nominated sub-sets (and their
complement) accordingly. This only affects splitting
on Tipe, not modelling of it. A function to implement
this setSplits option is just a few lines.

1

setSplits sets []

setSplits sets xs =

let y:ys = map (memberships sets) xs

in if all ((==) y) ys then [] --trivial
else [setSplitter sets]

instance Splits Tipe where -- e.
splits = setSplits [[Alzhelmers] [Ch11d]]

If ‘’k’ sub-sets are specified, their complement is taken
to be the (k+1)st. Note that the programmer decides
how to group the values in Tipe here. In principle a
program could search through the possibilities but it
would, of course, add to the overall search time.

It is a simple matter in IP to implement exten-
sions, such as setSplits, to models to suit a problem
and its data.

3.5 Selecting Sub-Spaces: Projections

In a typical application of a classification tree, the in-
put variables and the output variable are fixed. But
here, in a Bayesian network, the selection of parent
(input) and child (output) variables must be under
program control on a node by node basis; this prop-
erty made the case study particularly interesting from
the IP point of view. Class Project, as in projec-
tion, was created for this purpose. Some such mech-
anism is needed for heterogeneous variable types in a
strongly typed language; the network estimator (sec-
tion 3.7) does not “care” what types the data and
sub-estimators have, provided only that they are con-
sistent. An instance, type t, of class Project is some
multi-dimensional type for which a list of Boolean
flags can be used to restrict t’s activities to certain
selected dimensions. The non-selected dimensions be-
have in a trivial, “identity” manner, that is appropri-
ate to type t, if they are ever called upon. In the

estNetwork perm estMV dataSet =
let
= (length . selAll) (estMV [])
search _ [] = [1 -- done
search ps (c:cs) =
--parents ps, children c:cs

let
opFlag = ints2flags [c] n =--child
ipFlags = ints2flags ps n --parents

cTree = estCTree
(estAndSelect estMV opFlag)
(splitSelect ipFlags)
dataSet dataSet
in cTree : (search (c:ps) cs)
trees = search [] perm --network
msglen = sum (map msgl trees) --total msgl
nlP datum = sum
(map(\t -> condN1Pr t datum datum) trees)
in
MnlPr msglen nlP --return a Model
(\() -> "Net:"++(show trees))

Figure 5: Network estimator.

case of a Model this behaviour is to return zero in-
formation, probability one, for non-selected variables,
i.e. they are taken to be already known, or to be of
no interest.

class Project t where
select :: [Bool]l -> t -> t

As discussed in section 3.4, class Splits exists
for partitioning data-spaces — discrete, continuous,
multi-variate or whatever other data-spaces are made
instances of it. A new class Splits2, inspired by
Project, was defined (it could perhaps be folded into
class Splits) to allow splitting on only selected vari-
ables:

class Splits2 ds where
splitSelect :: [Bool]l->[ds]->[Splitter ds]

3.6 Handling Missing Data

The lost person data set is difficult in having many
missing values. Most data have at least one missing
value, and some have several. Every variable is miss-
ing in some datum. Haskell already has the ideal type
to represent possibly missing values: Maybe. New op-
erators were implemented to extend arbitrary statis-
tical models to cover possibly missing values. Rather
than cleaning the data — deleting data with miss-
ing values — or imputing (replacing) missing values,
missing-ness is built into our model.

Function modelMaybe m1 m2 might be called a
“high-order” function on models because it acts on
models which are, if not literally functions, princi-

pally made up of them. It turns an arbztmry model,
m2, of non-missing data of type t into the correspond—
1ng model of Maybe t. It requires a model, m1, of
Bool, for whether the data is present (True) or miss-

ing (False).

modelMaybe ml m2 =
let
neglogPr (Just x) = nlPr ml True + nlPr m2 x
neglLogPr Nothing = nlPr ml False
in MnlPr (msgl mil + msgl m2) neglogPr
. .show method omitted

MnlPr is a constructor for a type in class Model; it
takes a message length, a negative log likelihood func-
tion, and a description which shows the model.



The related high-order function, estModelMaybe
acts on estimators; it turns an estimator of non-
missing data into the corresponding estimator where
the data may include missing values:

estModelMaybe estModel dataSet =

let

present (Just _) = True

present Nothing = False

ml = uniformModelOfBool

m2 = estModel (map (\(Just x)->x)

(filter present dataSet))

in modelMaybe ml m2

This is not the same as just coding missing-ness as a
“special” value because it is not estimated with the
given definition of m1.

In the present application the missing-ness of val-
ues is certainly non-random for some variables, for
example Age is often not recorded by search teams
for cases of Hiker: : Tipe. However we are not inter-
ested in modelling missing-ness in this problem; it is
common knowledge. Hence a fixed unbiased model,
ml, is used above to “predict” missing (Nothing) or
present (Just...). The following definition of m1 can
be used instead if it is necessary to estimate missing-
ness:

ml = estMultiState (map present dataSet)

In addition to modelling, missing values also affect
splits, that is partitions of the data (section 3.4). A
simple strategy is for the variable to be split as for the
underlying type but with an extra option for missing
(Nothing) cases. Other splitting strategies, not ex-
amined here, could try to predict in various ways what
the missing value, or its distribution, really is and act
on that. There are a great many possibilities and,
this being an example, we just give one reasonable,
simple approach that is sufficient for the application.

3.7 Mixed Bayesian Networks and the Lost
Person Network

The function, estNetwork (figure 5), for inferring a
Bayesian network is given a permutation, a total or-
dering, of the selected variables that are to be con-
sidered; a variable may be dependent on none, some
or all of the variables preceding it in the permu-
tation. The use of total or partial orders on vari-
ables is not uncommon in network learners (Korb
& Nicholson 2004). It is sufficient for this applica-
tion because a plausible ordering of the variables is
fairly obvious but, in principle, it would be possible
to search over permutations. Such a search would
have to be heuristic if there were many variables, and
information theory does suggest some heuristics, but
the simple algorithm does not do this and the permu-
tation is currently taken to be common knowledge.

Internally estNetwork uses the estimator for clas-
sification trees (Allison 2003), estCTree, to do much
of the work. The remainder consists of organising
selector flags (section 3.5) corresponding to the al-
lowed parents for the child in the current node. Note
that the dataSet seems to be passed to estCTree
twice, as both the input and output variables — its
third and fourth parameters. But its first and sec-
ond parameters use straightforward auxiliary func-
tions ints2flags, estAndSelect and splitSelect,
to flag the child (output) to be predicted by the leaf
estimator and the parents (input) to be used for split-
ting as appropriate at each node in the network.

For lost persons, variables 1 to 3, Age, Race and
Gender cannot, in a causal sense, depend on other
variables and should come first, in some arbitrary
order, say [1,2,3]. Tipe probably depends on one

opog’

DistIPP

Figure 6: Lost Person Network 1.

or more of them, for example there are few young
Alzheimers cases. Topography and Urban can sen-
sibly come next, and one expects a relationship be-
tween them. That leaves HrsNt and finally DistIPP
to make up a plausible ordering, [1, 2, 3, 0, 4, 5, 6, 7],
of the first eight variables. There is also a natural null
hypothesis which models the variables independently.
The code to run the inference is shown below:

dataSet = read (readFile theDataFile)

[MissingPerson] --input
nw = estNetwork [1,2,3,0,4,5,6,7]
estMissingPerson dataSet  --model

nullModel = estMissingPerson dataSet

Figure 6 shows the first network inferred for vari-
ables 0 to 7; the node parameters are inferred but not
shown.

Tipe depends strongly on Age and also on Gender
and Race. As expected, Urban is dependent on
Topography. There is some direct dependence of
DistIPP on HrsNt, and of the latter on Age, but
there seems to be no strong predictor of DistIPP from
other variables. The model is significant with a total
two-part message length, for the first eight variables,
of 5512 nits against 5936 nits under the null model.
Other analyses were tried, for example allowing or-
dered (0rd) splits on Topography and Urban, in place
of Bounded Enum splits; the conclusions were broadly
similar.

When Tipe was allowed to split accord-
ing  to setSplits [[Alzheimers], [Child]]
(section 3.4), the implicit complement being
[Despondent...], the link from Age to HrsNt was
replaced by a link from Tipe (which itself depends
strongly on Age) for a saving of 6 nits on the model
against a loss of 3.7 nits on the data (figure 7).
However this small net gain should be taken with a
big pinch of salt and may well be due to the pattern
of missing data as much as anything.

As a final example, modelling all 15 variables gave
the network shown in figure 8; variable Tipe has been
duplicated for ease of drawing. The extra variables,
8 to 14, are:

TrackOffset (continuous),

Health = Well | Hurt | Dead,

Outcome = Find | Suspended | Invalid,
FindRes = Ground | Air | Local | Law | Dog,
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FindLoc = Brush | Woods | Field | Water |
Linear | Thing,

HrsFind (continuous),

HrsTo (continuous).

These extra variables can all be missing.

3.8 Comparisons

Weka (Witten & Frank 1996) which is based on Java
is perhaps the system closest to the present work.
Weka’s Bayesian networks “assume that all variables
are discrete” (Bouckaert 2004) p. 22 and “a limitation
of the current classes is that they assume that there
are no missing values” (Bouckaert 2004) p. 23. In
Weka, continuous variables must be discretized first
and how this is done may affect the final result. Dis-
cretization is unnecessary in IP for modelling and, for
splitting, is part of the network optimization as a by-
product of using our classification trees (section 3.2).
Missing-ness was built into the model when necessary
(section 3.6).

There are distant similarities between IP and in-
ductive logic programming (ILP): There has been
some interest in the use of complexity-based measures
in ILP (Conklin & Witten 1994, Srinivasan, Muggle-
ton & Bain 1994) but this aspect of ILP is less devel-
oped than work on MML. The programmer is involved
in the design of the search algorithm (section 3.7) in
IP to a greater extent than in ILP, typically in de-
signing new models and estimators; it is infeasible to
have a very general search over too large a class of
computable statistical models.

A model in IP, particularly one that is used as a
component of other models (figure 9), must be able
to handle extreme data sets. For example a Bayesian
network may contain several trees and each tree may
contain several leaf distributions. One or more of
those leaf distributions may be given a sub-set of data
that is “unusual” — perhaps consisting of just a single
item. MML insists that every model effects a valid,
decodable message (in principle) so there can be no
understating of a model’s complexity. A (sub-) model
must guarantee this, or at the very least raise an ex-
ception if it cannot. This principle keeps us “honest”
and ensures that the top-level model’s complexity is
valid.

Figure 8: All 15 Variables.

4 Conclusions

Inductive programming (IP) uses the compositional
abilities of functional programming, Haskell and min-
imum message length (MML) inference. Haskell’s fea-
tures have a number of advantages in inductive infer-
ence. Mapping a data set, such as lost persons, onto
the Haskell type system is a useful exercise in get-
ting to know the data very precisely; a data-analyst
will work in this space for some time. The need to
define a variable’s properties, e.g. Ord or not, auto-
matically suggests what is possible, such as whether
to split Topography as discrete or as ordered data
(section 3.2). These things cannot be forgotten; the
type and class system brings them to your attention.
The TP code shown is standard Haskell-98 but
other experiments (Allison 2004) do show that some
Haskell type extensions can be useful in some other
problems. In-built support for wide tuples, (,),
would make it easier to deal with large multi-variate
data sets, although template Haskell (Sheard &
Peyton-Jones 2002) is a possible solution.
High-order functions, such as estModelMaybe (sec-
tion 3.6), are invaluable in creating new ways of using
arbitrary statistical models. The polymorphic type
system ensures that the uses are both general and
type-safe. Haskell’s type inference algorithm often
finds a more general type for a function than its pro-
grammer did and this can also be the case with sta-
tistical models and their estimators. There is poten-
tial for an extensive library of operators on statistical
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models and their estimators.

Lazy evaluation means, for example, that only
models of selected variables of lost persons (sec-
tion 3.2) are evaluated. Selections are made once at
the top level; most of the algorithms do not “consider”
the matter at all.

Computing model complexity by minimum mes-
sage length (section 2.1) is a good match with the
compositional style of functional programming. The
reader may hardly have noticed any explicit Mes-
sage length calculations but they are handled by
modelMaybe (section 3.6) and other functions, and
are combined in the complexity of the Bayesian net-
work (section 3.1 and figure 9) and its classification
trees (figure 8) to inform the search.

A specific model can be created quickly for a new
problem thanks to Haskell’s expressive power. Of
course it cannot yet be claimed that the types and
classes created are the best possible designs for a com-
positional denotational semantics of statistical mod-
els. For example, a case can be made for specify-
ing the notion of a data set; perhaps data traversal,
data measurement accuracy and data weights should
be wrapped up in suitable types and classes. Only
more experience and time will let us settle on the best
trade-off between generality, usability and efficiency,
but experience to date is positive.

The Bayesian network estimator, estNetwork, and
associated classes Project and Splits2 (section 3.5)
took one day to create. The lost person application
(section 3.2) came along some weeks later and it took
one and a half days to create a working model, includ-
ing how to handle missing data (section 3.6) which
had previously been in the ‘must think about that
one day’ category. Any amount of further time can
be spent playing with the data once a model and a
program exist, although there is a fine line between
data exploration and fishing.
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