Learning Hybrid Bayesian Networks by MML

Rodney T. O’Donnell, Lloyd Allison, and Kevin B. Korb

School of Information Technology
Monash University
Clayton, Victoria 3800, Australia

Abstract. We use a Markov Chain Monte Carlo (MCMC) MML algo-
rithm to learn hybrid Bayesian networks from observational data. Hybrid
networks represent local structure, using conditional probability tables
(CPT), logit models, decision trees or hybrid models, i.e., combinations of
the three. We compare this method with alternative local structure learn-
ing algorithms using the MDL and BDe metrics. Results are presented
for both real and artificial data sets. Hybrid models compare favourably
to other local structure learners, allowing simple representations given
limited data combined with richer representations given massive data.

1 Introduction

There is a large literature on methods of learning Bayesian networks from ob-
served data. Much of that work has focused solely on learning network structure,
treating network parameterization as a separate process. However, some work
has been done on learning network structure and parameters simultaneously
and many algorithms exist for performing this task. Most techniques involve a
heuristic search through network space to find the optimal combination of di-
rected acyclic graph (DAG) and the set of associated conditional probability
tables (CPTs).

For discrete networks, CPTs are the most powerful representation of a child
node’s probability distribution. Any variety of interaction between parent states
may be expressed (where the parameters are entirely independent of each other);
likewise, any variety of functional dependence between parameters may be ex-
pressed, such as noisy-OR models. When, as in this last case, some parameters
are highly dependent upon others, this is described as local structure. The ex-
pressive power, and complexity, of CPTs is wasted in such cases, and so there is
value in finding simpler representations, such as modest-sized decision trees.

For example, consider Figure [Il which shows a CPT requiring 8 continuous
parameters; expressed in a decision tree form it requires only four. The benefit of
non-CPT models quickly becomes apparent as more parent variables are added.
The advantage of using local structures that are more economical than CPTs in
Bayesian networks has been clearly shown in [1I2] and elsewhere.

Here we apply CaMML (Causal discovery via MML) [3I4J5] to the learning of
local structure in Bayesian networks in an especially flexible way, using either
full CPTs, logit models or decision trees, or any combination of these determined

A. Sattar and B.H. Kang (Eds.): AI 2006, LNAI 4304, pp. 192-203] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Learning Hybrid Bayesian Networks by MML 193

on a node-by-node basis (hybrid models). We compare our approach with Nir
Friedman’s implementation[I] of the Bayesian BDe metric[6] and the MDL[7]
metric, which were also applied to learning local structure using decision trees,
although without hybrid model learning.

Previous work in learning
local structure with MML used
logit models[2]. Here we ex-
0.9 tend CaMML to decision trees,
0.8 making it possible to com-
02 pare the results -effectively
0.2 with local structure learn-
ing elsewhere. This requires
a new coding technique, dis-

tinct from that of [8], since the
Fig. 1. Decision Tree and CPT example decision trees involved in lo-

P(IA,B,C)

—_————o oo gk
—_——o 0o ~r~oow
—Oo— O ~0o 0N
(=]
w

cal structure have unique con-
straints. The hybrid learning likewise extends earlier work, allowing all varieties
of local structure to be represented in forms suitable to their complexity. This
provides an effective means of automatically adapting representational complex-
ity to the amount of data available.

2 Metrics

Minimum Message Length (MML) inference is a method of estimating a fully
parameterized model, using Bayes’s Theorem: [9]

P(H&D) = P(H).P(D|H) = P(D).P(H|D)

for a hypothesis (e.g., a Bayesian network), H, and data, D, and on Shannon’s
law for optimal codes [10]

msgLen(E) = —log P(E)

requiring an event, E, to have a code of length —log P(E). Lengths can be
measured in bits (log base 2) or, if mathematically convenient, in nits (natural
logs). In any case,

msgLen(H&D) = msgLen(H) + msgLen(D|H)

Being Bayesian, MML requires an explicit prior distribution, P(H), on hy-
potheses. If the hypothesis space is discrete, a hypothesis has a non-zero proba-
bility and computing a message length is in principle straightforward, involving
a negative log probability and a negative log likelihood. If however a hypothesis
has one or more continuous parameters, it has no probability as such, rather
a probability density. MML requires that continuous parameters be stated to
optimal, finite precision. The latter point is subtle, allowing Bayes’s rule to be

194 R.T. O’Donnell, L. Allison, and K.B. Korb

applied to continuous hypothesis spaces. MML inference is consistent and is
invariant under monotonic transformations of parameters.

MML uses an enumerable code-book of hypotheses previously agreed to by a
transmitter and a receiver. The transmitter sends data to the receiver in a two-
part message, sending a hypothesis, H, and then data coded on the assumption
that the hypothesis is true, D|H. The hypothesis H stands for a set of models
and thus gets a non-zero probability. There is a trade-off between the specificity
of the set (equivalently the complexity of H) versus the fit of H to expected data.
Note that not only continuous, but also discrete, parameters may be stated with
less than maximum precision; we will see how this is useful for Bayesian networks.

Strict MML is computationally infeasible for all but the simplest problems
[11], but practical, efficient approximations exist for many useful problems
[T2UT3JT4]. The work described here relies on stochastic MML approximations [3].

Minimum description length (MDL) inference was developed as an alternative
to MML [I5] and uses the same message length paradigm. MDL, however, favours
universal priors and the selection of a model class rather than a parameterized
model. A detailed comparison of MML and MDL has been given elsewhere by
Baxter and Oliver[16].

BDe has its roots in Bayesian statistics. Like MDL, BDe attempts to find a
model class rather than a parameterized model. BDe integrates over its prior on
continuous parameters, whereas MML tries to segment continuous parameters
into optimally sized regions and returns (a representative of) this region as an
estimate.

3 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) over a set of variables.
Each node of the DAG represents a single variable. An arc commonly represents
a direct causal relationship between a parent and a child. A node specifies the re-
lationship between the node’s variable and its parents, if any; we use conditional
probability tables (CPTs), logit models and decision trees [§] for this.

An important concept when dealing with Bayesian nets is the ‘statistical
equivalence class’ (SEC) [I7]. Two DAGs in the same equivalence class can be
parameterized to give an identical joint probability distribution; there is no way
to distinguish between the two using only observational data over the given
variables, although they may be distinguished given experimental data. Another
important concept is the ‘totally ordered model’ (TOM). A TOM consists of a
set of connections and a total ordering (permutation) of variables. Just as several
DAGs may be in one SEC, several TOMs may realize a single DAG. TOMs are
discussed further when introducing our MML coding scheme in §4.3|

4 Learning Global Structure

We briefly discuss the coding scheme for MDL and BDe and then build on these
to present our MML coding scheme.

Learning Hybrid Bayesian Networks by MML 195

4.1 MDL Coding Scheme

We now summarize how Friedman encodes Bayesian networks using MDL. First
the network structure is encoded, then the parameters of the network, and finally
the data given the parameterized network. To encode the network structure, send
the number of parents each node possesses, followed by the selection of parents
out of all possible selections:

MDLy = <logk +log (Iﬂ](giﬂ))

%

where k is the number of nodes and 7 (i) is the parent set for node . Friedman’s
code requires %1ogN nits per parameter to state a CPT (N is the sample size).

The data requires
N

MDLp =~ log P(D;)
i=0
Using this coding scheme and a heuristic search the DAG with the shortest
description length is accepted as the best model.

4.2 BDe Scheme

Heckerman et al.’s BDe metric [6], based on a previous Bayesian metric of Cooper
and Herskovits [I8], has been augmented with decision trees by Friedman [I]
whose implementation is used for comparison in section [l The suggested prior
is based on an edit distance from an expert supplied network. Friedman uses a
prior based on the MDL prior outlined above with P(H) oc 2MPLu,

Once the network structure has been stated, we must integrate

P(D|H) = /P(D|9,H)P(9|H)d9

where P(0|H) is the prior parameter density and P(D|f, H) is the probability
of the data given the parameterized network. Using a Dirichlet prior, the closed
form solution is:

/

r N
P(D|H) = HHF(Z 2%7:/1 lepal)

i pa; zi|pa;

’

F(Nmpai + N(z;,pa;))

+ N(pa)) H (N

rilpai)

where z; is a node instantiation, pa; an instantiation of 7 (z), I'(z) is the Gamma
function and N(+) counts the number of sample cases matching an instantiation.
Heckerman’s default “equivalent sample size”, N =5, is used.

4.3 MML Coding Scheme

Whereas many methods use a uniform prior over SECs or DAGs, CaMML uses
uniform priors over totally ordered models (TOMs). In essence, TOMs are DAGs

196 R.T. O’Donnell, L. Allison, and K.B. Korb

with a consistent total order selected. A TOM can be thought of as a way of
realizing its DAG; in effect, TOMs specify distinct possible worlds in which the
DAG is true. We should prefer to employ non-informed, uniform (maximum
entropy) priors only as a last resort — i.e., when we arrive at the most primitive
level of description, in this case TOMs rather than DAGs or SECs. (For more
discussion of this approach see Korb and Nicholson, Chapter 8. [4].)

CaMML’s stochastic search algorithm (section E4]) samples TOMs, but it
counts DAGs, so that each TOM contributes probability mass to its DAG. The
algorithm has the following stages. A TOM is sampled in the MCMC process.
The corresponding DAG is “cleaned” by deleting weak arcs whenever this reduces
the total message length. The clean DAG is counted, as is its SEC. Repeated
counting allows us to estimate the posterior distribution over the DAG and SEC
space.

When the sampling phase is over, SECs are also grouped in case the data does
not justify choosing between them, using a Kullback-Leibler (KL) divergence
test. As with lower level groupings, such a group may gain enough probability
mass to be preferred even when the single SEC might not.

The encoding of a single TOM has two parts: a list of arcs and a total ordering.

The arcs can be encoded in m x log P, + (@ — m) x log(1— P,) nits. Where

k is the number of nodes in the network, m is the number of arcs present and
P, is the prior probability of arc presence (default 0.5). The cost to state the
total ordering is simply log k! nits. In addition to the TOM we must also use
log p(data|TOM) nits to express the data — see section Bl This scheme forms
the basis of an efficient code employing our prior beliefs about network structure.

4.4 The MCMC Search

An MCMC search algorithm allows us to approximate a posterior distribution
over DAGs and SECs by sampling TOM space. The algorithm used follows:

1. Simulated Annealing to find the best single TOM. This optimal TOM is
used to estimate P, and provide a starting position for our sampling.
2. Attempt a mutation on the current TOM M transforming it into M’

(a) Temporal: Swap the order of two neighbouring nodes in the total or-
dering. If an arc exists, reverse its direction.

(b) Skeletal: Select two nodes at random and toggle the existence of an arc
between them.

(c) DoubleSkeletal: Select three nodes at random, toggle the arcs from
the first two to the final (in the total ordering).

(d) ParentSwap: Select three nodes such that a — ¢ but not b — el
and toggle the arcs ac and be. This effectively removes one parent and
replaces it with another.

Mutations ¢ and d are not strictly necessary since they are compositions of

the other mutations, but speed up the sampling process.

L If not possible, choose a different mutation.

Learning Hybrid Bayesian Networks by MML 197

3. Accept M’ as the new sampled M if

log Pararr (M) — log Pasasr (M)
temperature

> log U[0, 1]

else retain M. Sampling is conducted at temperature = 1.8.

P PBes

4. Add a weight of &2 Mltw;n_peerxﬁujie P2 to the current TOM’s clean represen-
tative DAG and SECs accumulated weight. Ppesiparr is a common factor
to avoid underflow.

5. Loop to 2 until a set number of steps are complete.

Step 4 above refers to a TOM’s clean representative DAG and SEC; mutation
continues from the current “unclean” TOM at the next iteration.

5 Learning Local Structure

The coding scheme and the MCMC algorithm place few requirements on the
method used to represent local structure (i.e., parent-child relationships). The
present work uses CPTs, decision trees, logit and hybrid models. The later is
able to choose between other model types on a node-by-node basis. Here we
describe the addition of local structure to our MML metric; see Friedman [1] for
more detail on MDL and BDe.

5.1 CPTs

The CPT is the standard building block of Bayesian networks. If a child (vari-
able) takes one of S possible values (states), a multi-state distribution having
S — 1 parameters must be specified for each combination of parent values. Wal-
lace and Boulton [12] gave the MML calculations for the multi-state distribution.
The message length was shown to be equivalent to using an adaptive code for
the data with an extra “penalty” of a fraction of a nit, %1og & ~ 0.176 per
parameter; the consequence of using an estimate with optimum precision [13]:

jpal x (jz| ~1), 7e & ((N (pas) + Jo] — 1))
mesglen = P00 " D 1og 2 1 310
g 2 £6 2_log (Jz| — 1)! x Hﬁ.l(N(pai,xi)!)

pa;

where |pa| and |z| are the number of parent and child states respectively.

5.2 Decision Trees

To code decision trees we begin with Wallace and Patrick’s code [§]. Briefly,
each leaf or split node has an initial cost of 1 bit. Also stated for each split

2 A high temperature causes TOM space to be more widely traversed, low temperature
makes the sampling more likely to stay near the original model. A temperature of
1.8 was used throughout this work.

198 R.T. O’Donnell, L. Allison, and K.B. Korb

is the variable being split; an attribute cannot be “reused” and so this costs
log k — depth nits. Each leaf must state a model for that node and also the data
given that model. Multinomial models are the natural choice here, as with CPTs.

In general, decision trees can ignore parents that are irrelevant by never split-
ting on them. However, in the context of local structure in a Bayesian network,
we require that all parents should be used, since the coding of the network struc-
ture implies it. To achieve this, we correct the message length and force our trees
to split on each parent at least once, other trees being disallowed. Selecting par-
ents is thus the responsibility of network topology discovery, rather than the
local node encoding.

Our strategy for reclaiming lost probability (from the disallowed trees) is
based on the number of trees with n split nodes, i.e., on the Catalan numbers

defined as cat(n) = (2:> + (n + 1). The prior probability of a given tree

structure with n splits can be calculated as p, = 2-(7*1; by multiplying these
numbers we calculate the total proportion of prior allocated to models with n
splits. As can be seen in Table [Il this prior is skewed towards models with few
splits, as one would expect.

Table 1. Catalan numbers Table 2. Savings made(in bits): where n =
number of parents, min = minimum num-
ber of splits, max = maximum number of

cat(n) 2~ " T p cat(n) S0 g picat(i)
T 0.50000 0.50000 0.50000
1 012500 0.12500 0.62500 splits, s = number of splits made
2 0.03125 0.06250 0.68750
5 0.00781 0.03906 0.72656
14 0.00195 0.02734 0.75391
42 0.00048 0.02051 0.77441
132 0.00012 0.01611 0.79053
429 0.00012 0.01309 0.80362
oo 0 1

min/max Ps<min Ps>max Pinvalid Saving
0...0 0.000 0.500 0.500 1.00
.1 0.500 0.375 0.125 3.00
.3 0.625 0.273 0.102 3.30
L7 0.688 0.196 0.116 3.11

RN om w~ols

Tl W= OB

1..

2..

3..
4..
5..

.31 0.754 0.099 0.147 2.77

Taking the simplest example of a leaf with no parents, it is obvious that our
tree structure will be that of a single leaf. However, under our original prior 1 bit
is still required to express this structure. For a (binary) tree with 1 parent the
original structure cost would be 3 bits, one for each split and one for each leaf. In
general, it would be reasonable to pay this cost as a decision to split is actually
made, but in the present context the modified priors tell us that these splits are
always required, so the penalty should be removed. A slightly more complex case
arises for two or more parents where our priors allow between N and 2%V splits
where N is the number of parents. An approximation of this saving is used for
n-ary variables.

To further illustrate, we take a tree with three binary parents. We are con-
strained to have at least three splits, and no more than seven splits. From Table[T]
we see that trees with less than three splits use 0.688 and trees with more than
seven use 1—0.804 = 0.196 of our prior hypothesis space. So our original prior has
0.884 wasted on impossible hypotheses! By subtracting — log 1—0.884 = 3.11 bits

Learning Hybrid Bayesian Networks by MML 199

from our message length we effectively redistribute the probability mass from
trees with an invalid number of splits to those with appropriate splits.

By examining the table of Catalans, Table [I] it is possible to calculate the
saving, as seen in Table[2l Using our true prior to calculate Decision Tree costs is
obviously a good thing to do, but it becomes especially important when dealing
with hybrid models so that CPTs and trees can compete fairly.

5.3 Logit

We follow Neil et al.[2] in supporting MML logit models of local structure. A
CPT treats each parameter independently. It is common, however, for there to
be local structure, with some parameters dependent upon others. A first order
logit model allows us to exploit this.

e®itbizg +Cizg-.

P X =zx|Z1=2,Z0=29,... 2y = 2z,) = le)jl e@iHbjzy +Cizy

When the effect of each parent is independent of the effects of other parents
(so joint parameters are not independent), we expect our logit model to give
a better representation of a distribution than a CPT would; given interacting
parents a CPT or DTree would be expected to perform better. To get the best
of both worlds, hybrid models are useful.

5.4 Hybrid Models

Hybrid models, as the name suggests, are combinations of two or more mod-
els of local structure; in this case we have combined CPTs, decision trees and
logit models. Previous work [2] combined CPTs and logit models with some
success.

We define a hybrid model as a model which can choose between competing
local models to give the best result. The search costs a decision tree, a logit and
a CPT, choosing the one with the lower MML cost. It is also necessary to add
log 3 nits to the node’s cost — treating models as being equally likely apriori.
This extra cost is not required for models with zero or one parent, as the CPT,
DTree and logit have equivalent expressive power, so a CPT is used.

6 Evaluation

Our results are defined in terms of KL divergence from a true model (when
known) or log probability on a test set (otherwise). Tests were also run on data
generated from artificial networks having varying degrees of “decision treeness”
in their local structure to show cases where CPTs should be favoured and where
decision trees should be favoured; hybrid models should perform well across
the whole spectrum. This degree is quantified by P;: the number of leaves a
decision tree will possess is at least P; X |pa|. Low values correspond to more
local structure. Our simple tree generation algorithm follows:

200 R.T. O’Donnell, L. Allison, and K.B. Korb

. Begin with an empty tree (single leaf)

. Choose a leaf at random and split using any unused variables

. If less than P, X |pal leaves exist, goto 2

. For each variable has not been split on, choose a leaf and split on it.

=W N =

In addition to the random networks we use the “insurance” network, which
consists of 27 variables with arity ranging from 2 to 5, and also the real datasets
listed in Table Bl

Error bars are shown at 1.96 standard errors (SE) from the mean. Ideally,
pairwise comparisons over all searches would have been used, but this becomes
unmanageable when comparing 8 unique metrics.

7 Results

Figure [2 shows results for artificial networks with varying degrees of local struc-
ture, i.e., varying P;. The KL divergence of the inferred network from the true
network is plotted. Results are averaged over 100 trials. CaMML performs much
better than BDe and MDL, both with CPTs and DTrees. As expected, CaMML
DTrees do best when P, is low and CPTs do better when P, is high. The CPT-
DTree hybrid model does well across the range.

Logit models were excluded in this test, as their assumption of a non-inter-
active distribution is not met here and as such would perform poorly. An ex-
periment similar to this (although varying levels of first and second order effect
strength) compares CPTs, logits and CPT-logit hybrid models is found in Neil
et al[2]. That paper shows logit models outperforming CPTs when their assump-
tions are warranted and CPTs winning when they are not. Again, hybrid models
perform well throughout.

0.2 T T T T T T T T T L= T
MML-CPT +——— ; -
0.18 MML-Tree ---x-- . L]
: MML-Hybrid :----- 3 ; i i
BDE-CPT - ! i To! i
0.16 + BDE-Tree --=- : iy i ‘ql) i
MDL-CPT *---o--- Lo n B*\‘.: :_.
014 MDL-Tree :---e-- : ?715 Er}j’ ‘ u‘ ‘ 1:%—
2 S .
& o012 Bl H B [O R R
s | PO or ' i !
> - [orit : 4 4 i
iS5 0.1 o i e i i - |
- N DT‘: L il ;} !
x T ‘ i i : AT T X !
008 - oo oope g [l L % | i
0.06 [= w7 owt L i A 4 B % i
"o { i { ‘ 1 i ki :
} 4 R ot o K 4
0.04 [¥ i s i
0.02 L L L L L L L I L I L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p(LeaflParentCombination)

Fig. 2. Varying P;, P, = 0.25, N = 1000, 7 nodes, arity = [2,5,10,7,3,3,2] 100 folds.
Error bars at 1.96 SE.

Learning Hybrid Bayesian Networks by MML 201

Figure Bl shows KL divergence results for the insurance network while vary-
ing the training sample size. Plots were adjusted by multiplying KL values by
N/log N, as suggested in [I], keeping values approximately constant across the
graph by compensating for KL asymptoting to zero as N grows large. As in
Figure 2l MDL performs worse than MML and BDe across the board and as
such has been removed to reduce clutter.

It is clear that for both MML and BDe (and unshown MDL results) that
tree based learners often outperform CPT learners for this example. The dif-
ference is especially evident for large datasets. This result confirms Friedman’s
work.

Of more interest, however, is the comparison to logit based learners. Our
MML logit learner significantly outperforms all out non-logit learners for small
datasets (N < 1000) but performs much worse for large datasets. This is due to
logit models being able to approximate first order effects better than CPTs or
trees for small datasets, but being unable to express second (and higher) order
effects when enough data is given to reveal them. Our MML hybrid learner (using
CPT, tree and logit models) has the best of both worlds. It performs as well as
the logit model for small sample sizes, then roughly as well as the tree based
model for larger data sizes.

130 T T T T T T T
MML-CPT +—— B
120 b MML-Logit ~-x-- 4
MDL-Tree :-----
110 + MML-Hybrid &~ B
BDE-CPT &~ T
8 100 | BDE-DTree ---o-- : .
: |
2 90 i b
g} < |
S 80| F } =
< I
X - i
3 r . E | o]
© T " i
g eof _ o - ‘ ' oA
’ S I * A R
50 | . s hg? % wy e S o
aof 4 x oy - = ;i A
30 1 1 1 1 1 1 1
100 250 500 1000 2000 4000 8000

number of samples

Fig. 3. Insurance Network, 10 folds. Error bars at 1.96 SE

Figure A shows results from several Table 3. Real Datasets from UCI repository
real datasets summarized in Table Bl

name |description k arity N

Once again MDL performed badly 700 Animal attributes 17 2-7 101
and is not shown. Eight datasets are ICU - |Intensive care unit |17 2-3 200
. Flare Solar flares 13 2-7 323

examined including the six used by Voting gS congress votes 17 2-3 435
. Popularit hildhood popularity.[11 2-9 478
Neil [2] and two larger datasets where |"cPI 2 Y | oy (000 D es |37 2.3 3196

we would expect decision trees to |Mushroom|Poison mushrooms 23 2-12 8124
do well Nursery |Child care. 9 2-5 12960

202 R.T. O’Donnell, L. Allison, and K.B. Korb

Comparing CPT and tree based learners (for MML and BDe) we see com-
parable results for small datasets, with tree learners performing significantly
better on larger datasets. To visually clarify results, all logP values have been
normalized by the worst scoring learner for each dataset.

In all but one of our datasets there is a clear winner between MML Tree and
logit models, with logit winning on small datasets, but loosing badly on large
datasets. Our hybrid model does well throughout having several significant wins
against each rival MML learner, but no significant losses.

In results not shown, all hybrid combinations of models were examined. That
is a “CPT-Logit”, “CPT-Tree” and “Iree-Logit”, in addition to the “CPT-Tree-
Logit” shown. It was evident that when our hybrid model contained a logit
component, it did well on small datasets and when it contained a tree component
it did well on large datasets. Hybrid learners with both options did well on small
and large datasets. Removing CPTs from the “CPT-Tree-Logit” learner has a
much smaller effect than removing either the tree or logit component.

104 —‘—I T T T T T T T
1.02 H | T B) -
g sl e 10 1t * +
a Ll BRLE Nalingls Fm N = i
z 098 el o ot X ko *Fao
£ 096 F - x L. i
S oeaf | | *g © .
L rao MML-CPT +——+—
3 092p MML-Logit ---x---
K] o9 b1 I * MML-Tree :--*--- |
7} . e MML-Hybrid 8-
088 BDe-CPT ~-m—1 |
! BDe-Tree ---&--!
086 1L 1 1 1 1 1 1 1
00 ICU flare vote popularity kr-vs-kp mushroom nursery
Dataset

Fig. 4. UCI Repository datasets, 100 folds. Error bars at 1.96 SE

8 Conclusion

We have shown that trees, logit and hybrid models of local structure can be in-
troduced successfully into the CaMML search procedure. When jointly incorpo-
rated in hybrid model discovery, the result is a flexible learning procedure which
automatically accommodates data set sizes by preferring simple local structure
representations (e.g., logit models) given small data sets and by finding richer
representations (decision trees and/or CPTs) given large data sets. We also com-
pared these MML metrics with BDe and MDL metrics, finding that generally
BDe and CaMML do well, with MDL performing poorly.

Acknowledgments

We would like to acknowledge the late Chris Wallace whose work on MML,
Bayesian networks and decision trees was pioneering.

Learning Hybrid Bayesian Networks by MML 203

References

10.

11.

12.

13.

14.

15.
16.

17.

18.

Friedman, N.; Goldszmidt, M.: Learning Bayesian networks with local structure.
In: Uncertainty in Artificial Intelligence. (1996)

Neil, J.R., Wallace, C.S., Korb, K.B.: Learning Bayesian networks with restricted
causal interactions. In: Uncertainty in Artificial Intelligence. (1999)

Wallace, C.S., Korb, K.B.: Learning linear causal models by MML samplling. In
Gammerman, A., ed.: Causal Models and Intelligent Data Management. Springer-
Verlag (1999)

Korb, K., Nicholson, A.: Bayesian Artificial Intelligence. CRC Press (2003)
O’Donnell, R.T., Nicholson, A.E., Han, B., Korb, K.B., Alam, M.J., Hope, L.R.:
Causal discovery with prior information. 19th Australian Joint Conf on AI (2006)
Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning 20(197-243) (1995)
Lam, W., Bacchus, F.: Learning Bayesian belief networks. Computational Intelli-
gence 10 (1994)

Wallace, C., Patrick, J.: Coding decision trees. Machine Learning 11 (1993) 7
Bayes, T.: An essay towards solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Soc. of London (1764/1958) reprinted in
Biometrika 45(3/4) 293-315 Dec 1958.

Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27(3) (1948) 379-423

Farr, G.E., Wallace, C.S.: The complexity of strict minimum message length in-
ference. Computer Journal 45(3) (2002) 285-292

Wallace, C.S., Boulton, D.M.: An information measure for classification. The
Computer Journal 11 (1968) 185-194

Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length.
Springer, Berlin, Germany (2005)

Allison, L.: Models for machine learning and data mining in functional program-
ming. Journal of Functional Programming (2005)

Rissanen, J.: Modeling by shortest data description. Automatica 14 (1978)
Baxter, R., Oliver, J.: MDL and MML: similarities and differences. Technical
Report 207, Dept of Computer Science, Monash University (1994)

Chickering, D.: A transformational characterization of equivalent Bayesian network
structures. In: Uncertainty in Artificial Intelligence. (1995)

Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning 9 (1992) 309-347

	Introduction
	Metrics
	Bayesian Networks
	Learning Global Structure
	MDL Coding Scheme
	BDe Scheme
	MML Coding Scheme
	The MCMC Search

	Learning Local Structure
	CPTs
	Decision Trees
	Logit
	Hybrid Models

	Evaluation
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

