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This paper examines the effects of using a segmentation method to identify change-points

or edges in vegetation. It identifies coherence (spatial or temporal) in place of uncon-

strained clustering. The segmentation method involves change-point detection along a se-

quence of observations so that each cluster formed is composed of adjacent samples; this

is a form of constrained clustering. The protocol identifies one or more models, one for

each section identified, and the quality of each is assessed using a minimum message

length criterion, which provides a rational basis for selecting an appropriate model.

Although the segmentation is less efficient than clustering, it does provide other informa-

tion because it incorporates textural similarity as well as homogeneity. In addition it can be

useful in determining various scales of variation that may apply to the data, providing

a general method of small-scale pattern analysis.

ª 2007 Elsevier Masson SAS. All rights reserved.
1. Introduction

Terms in italic type (at their first occurrence) are explained in

the glossary.

Unsupervised clustering has been a useful technique for ana-

lysing vegetation data since its first use by Goodall (1953). The

development of minimum message length (MML) clustering

(Wallace and Boulton, 1968; Boulton and Wallace, 1970; Wal-

lace and Dowe, 2000; Wallace, 2005) provided a method that

estimated the number of clusters and their properties consis-

tently using a fuzzy clustering procedure. Both hierarchical and

non-hierarchical clustering can be obtained using the minimum

message length (MML) procedure. This can accommodate sev-

eral kinds of data (nominal, continuous and angular),
sequences of such values and copes with missing values. By

employing fuzzy clustering we can also obtain consistent esti-

mators of cluster parameters whereas crisp clusters do not

guarantee consistency.

In some circumstances, however, an unrestricted cluster-

ing is not demanded. Instead, a partition that retains spatial

or temporal coherency is desired. Such circumstances include

but are not limited to:

Mapping. The graphical presentation of spatial variation is

difficult if the entities to be mapped represent complex,

highly textured areas with fuzzy assignment to classes.

Additionally, there will be further complications because of

the existence of multi-scale patterns. The delimitation of
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correct. It is possible to incorporate prior knowledge concern-
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spatially coherent areas with crisp boundaries will usually

be desirable.

Process and context changes. In temporal and spatial series

some processes may be restricted to particular contiguous

sections. Alternatively, the environmental context may itself

be changing abruptly resulting in the series showing markedly

different properties in different coherent sections as well as

smoother gradations.

Scale variation. Vegetation processes are scale dependent and

interactions between scales is a major component of pattern

formation. Many methods for identifying interesting scales,

for example those derived from the work of Greig-Smith

(1961) assume that the component patches are of similar

size. Since environmental gradients can be of varying steep-

ness it is unlikely that patches of similar sizes actually occur,

although some environmental processes such as cryoturba-

tion could generate them. Mostly, such patches are directly

generated by vegetation processes (see Boerlijst and Hogeweg,

1991). A method for identifying spatially or temporally coher-

ent segments would be useful in identifying such fragments

without any assumptions concerning their size.

1.1. Pattern and process

Historically, the methods used to identify patch structure in

vegetation, such as those of Greig-Smith (1961), have assumed

that there is a periodic pattern of equal-sized clusters. By

employing minimum message length criteria we can avoid

such assumptions. Segmentation can involve fragments of

varying length. Periodicity can be identified by establishing

common models for (non-adjacent) fragments if these are

not too costly; that is they do not increase the message length

by very much. In addition, any hierarchical structure may also

be investigated, though we have not done so in this paper.

In order to determine coherent fragments we need to seg-

ment a series, or an array, of observations. In segmentation we

seek to break a series into a series of segments within which

common processes may be assumed to be operating. The (in-

ternal) ends of any segment are called change-points or edges.

Various methods have been proposed for doing this (see

Dale, 1994), but the development of model selection criteria

such as MML has provided means of estimating the number

of change-points whereas many previous methods assumed

some fixed number (e.g. Emad-Eldin and BuHamra, 1996) or

used human assessment. A large number of proposals have

been made for edge detection in image processing and for

detecting changes in time series. However, Baxter and Oliver

(1996) have suggested MML methodologies that seem to pro-

vide a preferable basis (see also Oliver et al., 1998; Oliver and

Forbes, 1997; Fitzgibbon et al., 2000; Hanlon and Forbes, 2002).

Segmentation is one form of constrained clustering; in a sim-

ple form this can mean no more than permitting only adjacent

samples to join the same cluster. Methods that have been pro-

posed for this task include those of Ferligoj and Batagelj (1983),

Dale and Dale (1994) and more generally Critchlow (1985). As

with all clustering, a key requirement is to estimate the num-

ber of clusters or segments. Here we use the minimal message

length principle combining the description of a model for the

data with the likelihood of the data assuming the model is
ing the model but none was available here.

Assessing the significance of spatial coherence was first

discussed by Krishna-Iyer (1949). However, it must be recog-

nised that the fragments formed by segmentation will differ

from those sought in unconstrained clustering. Clusters are

usually defined to be homogeneous collections of things,

although the definition of homogeneity can be complex.

In contrast coherent segments may be expected to be mix-

tures since they can encompass various trends and (textural)

mixtures of things, so long as these remain coherent. With

segments, the critical property is that the same processes

appear to operate throughout the segment. Homogeneity,

per se, has no special significance compared with common

trends and common texture.

In this paper we shall examine the results obtained by seg-

menting a spatial series of observations, termed ‘things’ and

compare these with the results of an unsupervised and

unconstrained clustering. For comparison we use the minimal

message length principle to provide a common measure of

quality.

1.2. Alternative methods

1.2.1. Segmentation
Dale (1994) has previously examined problems of determining

boundaries, edges or change-points and, more generally, non-

stationarities and non-linearities in phytosociological data.

One observation was that such data are often extremely noisy.

Smoothing is necessary and this can make edges difficult to

detect and enhance apparent continuity. In addition, that

study was largely concerned with detecting single change-

points, and rather ignored the possibility that several might

occur. All the methods mentioned below, except those of

Dale (1984, 1986, 1988a,b), have been applied to the data

used here.

Dale (1984, 1986, 1988a,b) investigated the spacing and

intermingling of species boundaries on an environmental gra-

dient. The method is restricted to binary data, requires a linear

relationship between spatial gradient and environmental gra-

dient and relies on determining the boundaries of the distribu-

tion. This last may be problematic, as shown by Timone et al.

(1993). To be fair, this method was intended to examine

whether changes for different species showed coincidence

and not as a general change-point test. Viswanatthan et al.

(1999) provide a more general MML-based method for the

binary problem.

The MML procedure estimates the number of change-

points directly, using either numeric angular or binary data

or mixture of these. It provides consistent estimates of cluster

or segment parameters and it may be used to compare models

of different complexity. With the Gaussian model used here, it

identifies changes in either mean or variance or both. It can be

applied where serial correlation is expected and even to pro-

vide a test for both existence and extent of such correlation.

MML can be applied to two-dimensional data such as

images. A recent survey of other methods for this application

can be found in Skarbeck and Koschan (1994). Two-

dimensional segmentation methods sometimes use models
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such as Markov fields but also may rely on linking edges to

form regions, which implies a context dependency. In any

case, since our data are one-dimensional these possibilities

are not considered further here.

For quantitative data, the detection of change-points is

usually based on applying some test of statistical difference

across a potential boundary. Mostly these rely on differences

in mean (Srivastava and Worsley, 1986) or median (Pettitt,

1979, 1980, 1981), although tests are available which employ

difference in variance, change in some regression function

(Kim and Siegmund, 1989) or in (hidden) Markov models

(Kehagias, 2002). This last provides a method that can cope

with serial correlation between observations.

A few tests can distinguish more generally between distri-

butions. Thus the Anderson–Darling test (Stephens, 1974),

based on the Kolmogorov–Smirnov statistic, is used to test if

a sample of data comes from a specific distribution. Currently,

tables of critical values are available for the normal, lognor-

mal, exponential, Weibull, extreme value type I and logistic

distributions. Barnett and Eisen (1982) provide another test

for distribution change for a single change-point.

Indeed, a major problem with these methods is that they

are designed to identify only one change-point; an exception

is that of Emad-Eldin and BuHamra (1996) which looks for

two change-points. The other methods can be applied recur-

sively, but this modifies significance levels since it involves

multiple testing. It also introduces the question of when to

stop looking for more. Ferligoj and Batagelj (1983) used con-

strained clustering leaving the user to decide where to stop.

Lombard (1988) and Losch and Cruz (2002) both provide proce-

dures for application to multiple change-points but rely on

human examination to determine the final number. Yao

(1988) uses Schwarz (1978) criterion, which is an alternative

to MML but one generally found to be less powerful for model

comparison.

1.2.2. Clustering
With unsupervised clustering, the possibility of alternatives is

much more simply dealt with for segmentation. No clustering

method, other than MML, provides estimates of the number of

clusters, consistent estimates of the cluster parameters, the

possibility of incorporating serial correlation, the use of

numeric, binary and angular data and appropriate treatment

of missing values.

2. Materials and methods

2.1. Data and analyses

The analysis was applied to spatial sequences of vegetation

(Gitay and Agnew, 1989). The primary data were recorded on

a transect of 113 contiguous samples, each 4 � 4 cm, from

a dune slack in the Ynyslas National Nature Reserve, West

Wales, UK. In each sample the combined above- and below-

ground biomass for all perennial species was measured. In

all, 12 species were recorded but three were very rare and

have been ignored here. Thus all analyses used nine species.
Some data on mineral nutrient concentrations was also col-

lected but has not been used here.

An unsupervised clustering was made using the SNOB pro-

gram (Boulton and Wallace, 1970). The segmentation algo-

rithm was implemented using a library for machine-learning

(Allison, 2003, 2005) which was written in the functional pro-

gramming language Haskell (Peyton Jones, 2003).1 We

assumed Gaussian within-segment distributions, ignoring

any correlation between attributes. These correlations had

been checked and were small (Table 1). They are unlikely to

change the message length by more than 10 bits and such

a change is unlikely to change the results much. Other distri-

butions than Gaussian could be used if desired, such as multi-

state, angular and Poisson. Each analysis provides an estimate

of the number of change-points and the mean and variance

parameters of each segment so delimited.

2.2. Calculating the coding cost

If the data are numbered d[0],d[1],.,d[n � 1], we consider a di-

rected acyclic graph with edges e[i,j], �1 � i < j � n � 1, where

edge e[i,j] corresponds to a segment of data d[i þ 1],.,d[j].

There are n � (n � 1)/2 edges in total. The cost of edge e[i,j] is

the cost of stating the model of the segment and the data in

the segment. This cost involves coding the positive integer

( j � i), the parameters of the segment distribution, and the

segment of data given those parameters (cf. Wallace, 2005).

The segmentation problem amounts to finding a shortest

path from vertex d[�1] to d[n � 1]. This can be solved by Dijk-

stra (1959) shortest-path algorithm. The required prior proba-

bilities are based on uniform prior on m and 1
s prior on s, within

the given limits.

Various edge detection methods were applied, mostly to

individual species. Only single edges were sought. Changes

in both mean and variance were examined. In addition, by fit-

ting a regression on location in series it was possible to use

a more complex model.

3. Results

A preliminary question is to determine if segmentation or

clustering is warranted or whether a single segment or class is

sufficient. Details of the message lengths are given in Table 2.

In general, the smaller the message length the better is the

model. It is obvious from Table 2 that both segmentation

and clustering make considerable improvements on the one-

class model, and further that clustering is preferable to seg-

mentation since it results in a further reduction in message

length. Obviously, the constraints implied by the maintenance

of coherence by the segmentation have an additional, and

quite considerable, cost. The odds in favour of a shorter mes-

sage length are given by e�diff where diff is the difference in

message lengths. For example, the message length for the

one-cluster solution is 5946.1, for the five-cluster solution is

1 See Allison (2003, 2005) for reasons for using a functional lan-
guage, especially for creating prototype programs quickly. This
results from the high level of the language and the easy re-use
of existing code.
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Table 1 – Interspecific correlations

Species Agrostis
stolonifera

Amblystegium
serpens

Carex
arenaria

Carex
flacca

Eleocharis
uniglumis

Hydrocotyle
vulgaris

Juncus
articulatus

Pressia
quadrata

Ranunculus
bulbosis

Agrostis stolonifera 1 �0.03 0.21 0.25 0.11 0.10 0.02 �0.08 0.01

Amblystegium serpens 1 �0.15 �0.13 0.33 0.0 0.34 0.02 �0.07

Carex arenaria 1 �0.01 �0.03 0.05 �0.04 0.07 0.36

Carex flacca 1 �0.27 0.05 �0.38 �0.22 0.36

Eleocharis uniglumis 1 0.08 0.11 �0.08 �0.07

Hydrocotyle vulgaris 1 �0.02 �0.06 �0.02

Juncus articulatus 1 0.05 0.06

Pressia quadrata 1 �0.09

Ranunculus bulbosis 1
4562.2 and the difference is 1383.9. Thus the odds of the one-

cluster solution compared with the five-cluster solution are

given by e�1383.9:1, a very strong support for the five-cluster

solution.

3.1. Segmentation

The segmentation analysis identified four change-points and

thus five segments of contiguous samples. These segments

are, in terms of position of the things in the sample series:

samples 1–14, 15–38, 39–52, 53–77, 78–113. The means and var-

iances for the nine species in these segments, and for the total

population, are presented in Table 3.

All segments show changes in abundance of the common

species. However Amblystegium serpens and Eleocharis uniglumis

are restricted to the final segment while Ranunculus bulbosus

appears in segments one and three but not two, four or five.

Means for Carex flacca show an arched distribution, first rising

and then falling and the means for Juncus articulatus have the

reverse pattern, falling then rising (see Table 3). However, see

Dale (2005) for difficulties in using mean values. No symmetry

is assumed nor any ‘bell-shape’ for the arch response.

3.2. Clustering

The SNOB clustering program (Boulton and Wallace, 1970) also

identified five components (labelled 5, 6, 7, 14 and 15),

although these are not spatially contiguous (Table 4). Very lit-

tle fuzziness was apparent in the assignment of things to clus-

ters so this potential source of problems is unlikely to be of

serious concern. The means and standard deviations for the

nine species for these clusters are presented in Table 5.

Table 2 – Message length statistics for various cluster and
segment analyses

Data
analysis

Message
length

Difference
from the one

cluster analysis

One cluster

or segment

5946.1

Segmentation (five segments) 5109.0 837.1

Clustering (five clusters) 4562.2 1383.9
Cluster 6 is dominated entirely by Carex flacca while cluster

5 has more Carex flacca than cluster 6 and also has Ranunculus

bulbosus. Cluster 7 has the same mean for Carex flacca as clus-

ter 6, together with Preissia quadrata. It is close to cluster 6,

since in those few cases where the assignment is fuzzy for

things assigned to cluster 6, cluster 7 is the alternative,

although the probability is never very high ( p � 0.13).

Clusters 14 and 15 have reduced Carex flacca but with

Amblystegium serpens, Preissia quadrata and Eleocharis uniglumis

in varying amounts; 14 has more Preissia quadrata, 15 has more

Amblystegium serpens and Eleocharis uniglumis. Where there are

fuzzy assignments for cluster 14 the alternative is always clus-

ter 15, but again these are few in number and the alternative

has a relatively low probability.

3.3. Segment–cluster relationships

Examining this cluster information (Table 6) in the context of

the segments, the first four segments are clearly distinguished

from segment 5, the latter having additional species and lack-

ing others present in the four others. Segments 1–4 appear

much more similar than any of them are to segment 5, so it

is of interest to determine how well models for individual seg-

ments fit other segments. This is shown in Table 7, which

shows the message length for the fit of each model of a seg-

ment to segments other than to itself. The ‘best’ fitting seg-

ment, i.e. the ‘most alike segment is highlighted. Thus the

model for segment 1 fits itself best, as would be expected,

but it is also a reasonable fit for segment 3 and likewise for

segments 2 and its fit to segment 4. Segment 5 does not fit at

all well to any of the other segments. The diagonal elements

in Table 7 represent models fitting the segment from which

they were defined. Normalising these values to obtain the K-L

distances between segments (Table 8), the remoteness of seg-

ment 5 as a model for the remainder of the sequence is made

very clear. The relationships are, of course, asymmetric.

It is clear that the segment pairs (1,3) and (2,4) are similar.

Even allowing for asymmetry, the distances between these

pairs are the smallest in their respective columns; further-

more, the pair (2,4) is clearly closer than is (1,3). Models for

segments 2 and 4 fit reasonably to segment 5 data, but the seg-

ment 5 model is a bad fit for all other segments; it has its best

fit with segment 4. Note that the pair members (2,4) have sim-

ilar distances from segment 5, as do the pair members (1,3).

This suggests that the results might be further improved by
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Table 3 – Mean biomass (g) and (variances) for population and segments

Species Population Segment 1:
samples 1–14

Segment 2:
samples 15–38

Segment 3:
samples 39–52

Segment 4:
sample 53–77

Segment 5:
sample 78–113

Agrostis stolonifera 21.10 (11.98) 10.61 (5.77) 27.11 (13.36) 30.53 (14.17) 17.33 (10.45) 20.19 (7.97)

Amblystegium serpens 0.28 (0.86) 0 (0) 0 (0) 0 (0) 0 (0) 0.89 (1.37)

Carex arenaria 61.01 (34.44) 49.84 (24.35) 96.85 (36.80) 43.01 (23.08) 46.14 (21.83) 59.14 (30.77)

Carex flacca 72.13 (48.72) 45.28 (26.31) 77.00 (49.43) 147.81 (44.05) 85.69 (31.96) 39.18 (21.87)

Eleocharis uniglumis 1.84 (5.62) 0 (0) 0 (0) 0 (0) 0 (0) 5.93 (8.89)

Hydrocotyle vulgaris 13.27 (7.49) 15.74 (9.62) 10.89 (7.81) 14.47 (4.96) 14.01 (7.18) 12.87 (7.27)

Juncus articulatus 23.76 (22.78) 30.69 (28.76) 21.76 (20.40) 10.52 (13.11) 13.69 (18.22) 35.14 (22.27)

Preissia quadrata 0.62 (1.53) 0 (0) 0.20 (0.66) 0 (0) 0.22 (0.54) 1.70 (2.32)

Ranunculus bulbosus 0.99 (4.47) 2.22 (5.95) 0 (0) 5.74 (10.23) 0 (0) 0 (0)
fitting a common model to the members of each pair, which

could reduce the message length still further, at the expense

of losing spatial connectivity. An a posteriori search for com-

mon models to disjoint segments could give insight into repet-

itive structure in the data. In the present case, the first four

segments seem to represent alternating patches within the

same larger community, whereas the final segment is

a more distinct patch and might represent an element of a dif-

ferent mosaic.

3.4. Scale effects

The lengths of the segments are: segment 1 with 14 samples,

segment 2 with 24, segment 3 with 14, segment 4 with 25 and

segment 5 with 36. Note that the first and last segments are

open-ended so their true size is unknown. Segment 5 is thus

at least as large as the sum of segments 3 and 4, and probably

segments 1 and 2 as well. Segment 5 is distant from all the

others, indicating pattern at a different scale. Whether this

disjunction represents a higher level separation of patches

or some more significant change in processes operating

requires further study.

Note, too, the alternating pattern formed by segments 1–4.

Segments 1 and 3 are similar and alternate with segments 2

and 4. This suggests that the pairs of segments 1 with 2, and

3 with 4, are components of mosaic patterns at a similar scale

to that of segment 5. (Their similarity is captured in the K-L

distances.)

3.5. Edge detection methods

Almost all methods identified a change-point close to position

at sample 77 in individual species analyses and in a multivar-

iate study (Table 9). The actual locations range from 69 to 81,

with the multivariate result indicating position at sample 77.

The exceptional case is for Agrostis stolonifera which suggests

two other locations.

A second change was sometimes identified around posi-

tion at sample 31, though much less consistently. Interest-

ingly, this change is most commonly identified by the test

for change in parameters for regression on position. The test

for two change-points, in contrast, does not supply much sup-

port for this position. However, a change in regression param-

eters for regressions on location in series is the strongest

support.
All these results are based on differences in means across

the change-point. Change-points in variance were also found

in four cases. This suggests that relying on means only is

insufficient.

Table 4 – Locations of cluster members along series

Sample no.

Start position End position Cluster

1 2 5

3 13 6

14 14 5

15 26 6

27 28 7

29 31 6

32 32 7

33 38 6

39 41 5

42 51 6

52 52 5

53 53 6

54 56 7

57 65 6

66 66 7

67 69 6

70 70 7

71 75 6

76 76 7

77 78 6

79 83 14

84 84 15

85 85 14

86 87 7

88 88 14

89 90 7

91 91 14

92 92 7

93 93 14

94 94 15

95 97 7

98 102 15

103 103 6

103 110 15

111 111 7

112 112 14

113 113 15
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Table 5 – Species means (standard deviations) for unsupervised clusters

Species Cluster

5 6 7 14 15

Agrostis stolonifera No significant

variation from population

and not contributing

to the clustering

Amblystegium serpens 0 (0) 0 (0) 0 (0) 0.3 (0.9) 1.9 (1.7)

Carex arenaria No significant

variation from population

and not contributing

to the clustering

Carex flacca 111.2 (75.2) 72.1 (48.7) 72.1 (48.7) 50.5 (16.2) 25.2 (13.2)

Eleocharis uniglumis 0 (0) 0 (0) 0 (0) 1.8 (5.6) 11.7 (11.0)

Hydrocotyle vulgaris No significant

variation from population

and not contributing

to the clustering

Juncus articulatus No significant

variation from population

and not contributing

to the clustering

Preissia quadrata 0 (0) 0 (0) 0.6 (1.5) 3.1 (3.4) 0.9 (0.6)

Ranunculus bulbosus 13.9 (10.7) 0 (0) 0 (0) 0 (0) 0 (0)
4. Discussion

Mapping was not an aim of these analyses, so we will not dis-

cuss this topic, except to say that segmentation clearly pro-

vides sensible boundaries not available using unconstrained

clustering. It is also likely that in the length of transect avail-

able, about 4 m, it will be difficult to identify if processes oper-

ating have changed markedly. The distinction between the

first 77 things and the remaining 36 could indicate that such

a change has occurred but it can equally well be interpreted

in terms of a patch mosaic. Certainly the original authors of

the data regarded it as representative of a ‘homogeneous’

community (H. Gitay, personal communication).

4.1. Ecological interpretation

With the total length of the transect being only 11.30 m, much

of the variation investigated here lies in the range of morpho-

logically induced pattern. The results, as noted previously,

Table 6 – Comparison of clusters and segments

Cluster Segment

1 2 3 4 5

5 X X

6 X X X X x

7 X X X

14 X

15 X

X indicates a major contribution of the cluster to the segment. Clus-

ter 6 has a single occurrence in segment 5 indicated by x.
suggest patches forming an alternating pattern before a major

change. The major disjunction of the final 36 plots could per-

haps be related to an environmental change. Data were origi-

nally collected on the abundance of various soil minerals but

these do not conform to the change-point. Given a longer tran-

sect, and appropriate data, the segmentation would permit

testing of environmental correlates to change-points. But it

would be difficult to determine whether changes in soil min-

erals were the cause, and not the effect, of vegetation changes.

By using tests that particular variables have an ordered re-

sponse along a series of segments would suggest a continuous

response to the environmental variable, but this could also be

addressed by using a different model for within segment vari-

ation involving a regression on the external variable.

Although the segmentation results provide a less parsimo-

nious description of the data than the clustering results, they

also provide somewhat different information. The spatial

coherence constraint imposed in segmentation provides

emphasis on spatial scales and patterns of mosaics, instead

of vegetation homogeneity alone, an emphasis that may be

of considerable interest to management if the patterns found

suggest vegetation processes are responsible (cf. Boerlijst and

Hogeweg, 1991). Combining segmentation and clustering

enhances the value of data and further advances the argu-

ments for using ‘gradsects’ (Gillison and Brewer, 1985) as

a framework for data collection.

Contribution to the study of scale is a major component of

the value of segmentation. All segments were definable by

specific mixtures of clusters. However, some segments have

the same cluster elements. Thus the pair of segments 1 and

3, and again the pair 2 and 4, are similar and combine to sug-

gest an alternation pattern along the sequence. Segment 5 is

rather different and appears to occupy greater length. Inter-

estingly, it would seem that each of the pairs (1,2) and (3,4)
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Table 7 – Fitting segments with models for other segments

Fitted segment Model segment 1 Model segment 2 Model segment 3 Model segment 4 Model segment 5

1 566.91 1766.87 809.60 1541.22 216015.02

2 27044.65 953.28 91710.19 1040.21 202031.17

3 673.09 1696.08 573.24 1533.49 216202.48

4 27028.05 1050.81 91710.44 991.18 202189.95

5 27143.99 1263.96 92012.85 1303.86 1665.78

Column minima (excluding diagonal elements) for comparison between models shown in bold type.
are fragments of more or less the same size as segment 5, al-

though this may be a chance effect given the small sample of

fragments. In the present case, where the size of the basic

things is of the same order as that of plant clones, this may

simply reflect the size of the plants themselves. Table 8 shows

that indeed segments 1, 3 and 2, 4 are most similar, while sec-

tion 5 is markedly different. Unlike the traditional techniques

for pattern analysis derived from Grieg-Smith (1961), there is

no assumption of periodicity, and the patches can be, and

are, of different sizes.

The overall results suggest that the first 77 things show a re-

peating pattern of segments (1,3,2,4) where 1 and 3 and 2 and 4

are very similar. The final segment (5) represents a mosaic ele-

ment at a different scale. The size of segment 5 is at least as

large as either of the pairs (1,2) and (3,4) in the initial stages of

the series (38, 41 compared with 36). The small size of the sam-

ple (only three segments are bounded at both ends) prohibits

any definitive result, but the results are suggestive of the exis-

tence of several scales, one nested within one part of the other.

4.2. Extending the segmentation procedure

We need to consider possible extensions of the segmentation

procedure used here in the following areas: shifts in variance

and other properties, independence of samples and Markov

models, two-dimensional segmentation and image segmenta-

tion and assessment of the magnitude of changes between

segments.

4.2.1. Shifts in variance and other properties
While in most cases the shifts between segments are changes

of mean values, MML can also distinguish between segments

differing in variance. Thus the end of the first segment can

also be identified with a change in variance for the species

Agrostis stolonifera (confirmed by using the Talwar and Gentle
(1981) test). Three other species, Carex arenaria (sample 41),

Juncus articulatus (sample 77) Ranunculus bulbosus (sample 6)

also individually show changes in variance at the locations in-

dicated. Such a change in Juncus articulatus would be sub-

sumed in the major change at or about that position, but the

other two species have lost significance.

If segments are to reflect common textures it is necessary

that they capture changes in variance (and possibly skew-

ness). If the aim is also to identify common processes then

similar within-segment trends also have to be identified.

Such trends can range from simple linear trends to more com-

plex monotone and umbrella responses and it is expected that

MML or similar methods will be needed to determine the

‘most supportable’ model by balancing model complexity

against fit to data.

4.2.2. Independence of samples and Markov models
It is very likely that a series of observations, such as the

transect used here, will have correlation between adjacent

samples. In such cases alternative models may be more

appropriate than segmentation. Edgoose and Allison (1999)

proposed a procedure using first order Markov models for

this situation and Dale et al. (2002a) used this in examining

variation through time, and also examined possible higher

order Markov processes. Li et al. (2001, 2002) and Dale et al.

(2002b) examined clustering of Markov models using a BIC cri-

terion. This involves segmentation if a change in Markov

model is identified at some point in the series of observations.

It would also be possible to examine other time series (ARIMA)

models within segments.

4.2.3. Two-dimensional segments and image segmentation
The series here is one-dimensional, but the application of seg-

mentation to two-dimensional data has also been considered.

Skarbeck and Koschan (1994) provide a review of methods
Table 8 – K-L distance between segments

Fitted segment Model from
segment 1

Model from
segment 2

Model from
segment 3

Model from
segment 4

Model from
segment 5

1 0 58.11 16.88 39.29 15310.7

2 1103.24 0 3797.37 2.04 8348.56

3 7.58 53.06 0 39.29 15443.0

4 1058.45 3.90 3645.49 0 8020.97

5 738.25 8.63 2539.99 8.69 0

Column minima for comparisons between models shown in bold type.
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Table 9 – Location of change-points using various edge-detection methods

Species Location (sample no.) of change-point

Emad-Eldin
and BuHamra
(1996): edge 1

Emad-Eldin
and BuHamra
(1996): edge 2

Kim and Siegmund
(1989): change in

regression on
position in series

Quartile test:
Barnett and Eisen

(1982): mean
shift

Quartile test:
Barnett and Eisen
(1982): variance

shift

Srivastava and
Worsley

(1986): multivariate
test (i.e. species

are not identified)

Agrostis stolonifera 22 51 22 13

Amblystegium serpens 39 78 31 76

Carex arenaria 41 78 31 41

Carex flacca 27 77 31 25

Eleocharis uniglumis 40 81 31 74 77

Hydrocotyle vulgaris 43 69 15

Juncus articulatus 35 77 31 77

Preissia quadrata 40 78 31 24

Ranunculus bulbosus 42 77 31 6

Emad-Elmin test identifies two change-points in mean. Kim–Siegmund test identifies any change in a regression of species abundance against

position in sequence. Barnett–Eisen test identifies changes in mean and changes in variance. Srivastava–Worsley is a test for multivariate mean

change, although it is sensitive to variance changes as well. All other tests are univariate.
applied to image segmentation. Wallace (1998) looked at clus-

tering such data while incorporating local spatial correlation

using MML and Markov processes. A major problem here is

providing sufficient data. A 25 � 25 grid requires 625 samples

yet is a relatively small size for inductive analysis. In some

cases a three-dimensional data set may be needed, where

a temporal dimension is also included, but the spatial and

temporal dimensions will then have different properties; spa-

tial dimensions are symmetric, temporal ones are directional.

Again the data requirements would be large, especially for the

time dimension; financing recording over long periods is a dif-

ficult task.

Finding segments in vegetation data may prove difficult

because, unlike images, there may be lines of sharp change

but these need not connect to form discrete patches. Some

preliminary experiments by M. Dale, using edge detection

methods with vegetation data indicates that this is likely to

occur.

4.2.4. Assessing the ‘magnitude’ of a change
An important adjunct to segmentation is the provision of

some clustering of the segments themselves, because the

same segment, more or less, may recur at different positions.

As in our example, this will suggest that multiple scales are

effective and that some patterns are nested within others, or

form mosaics within larger structures. Wallace and Dale

(2005) examined a fully hierarchical MML clustering approach

and hierarchies may also be constructed using the Kullback–

Liebler divergence (or its generalisation Bregman divergence;

see Banerjee et al., 2004). The method used here provides an

asymmetric measure but otherwise seems satisfactory.

5. Conclusions

The results obtained here indicate that segmentation of an

observed series can contribute to determining patches of

variable size. By calculating between-segment distances
repetitive patterns can be identified, although finding com-

mon models for multiple segments might result in an im-

proved model. However, segmentation results in crisp

boundaries, whereas clustering without constraint permits

fuzzy assignment and consistent estimation of cluster param-

eters. As Dale (2005) indicates, ecological data generally re-

quires fuzzy clusters. Thus the use of clustering and

segmentation are complementary, both providing informa-

tion not present in the other.
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Glossary

Clustering: This is a procedure for subdividing the things form-
ing the data into subgroups. Each subgroup will be charac-
terised by similarity of its members and by disjunction
from other clusters

Unsupervised clustering: Unsupervised clustering employs a sin-
gle dataset and seeks clusters within it. In contrast, super-
vised clustering also uses an a priori definition of the
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classes as a dependent variable, with the others represent-
ing the independent variables.

Crisp and fuzzy clustering: Most clustering methods provide
crisp clusters, with every thing assigned uniquely to a sin-
gle cluster. With fuzzy clustering the assignment of things
to clusters is partial and any thing may have some degree
of membership in several clusters. In addition to any sub-
stantive reason for accepting fuzziness in assignment, its
use allows consistent estimates of cluster parameters to
be obtained. Crisp clustering does not guarantee consis-
tency. With the present data, the unsupervised clustering
results have only a single thing with high probability of
belonging to two clusters.

Non-hierarchical and hierarchical clustering: Non-hierarchical
methods of clustering partition the data into groups with-
out suggesting any form of linkage between them. Hierar-
chical methods demand that clusters are nested with
‘higher’ level clusters including ‘lower’ level clusters. In
nbsp;most such methods, all clusters are arranged in a sin-
gle hierarchy, although this is not a necessary condition.

Constrained clustering: In unconstrained clustering any thing
may be placed in a cluster with any other. In constrained
clustering two things may either be necessarily separated
or necessarily placed in the same cluster using some exter-
nal criterion

Segmentation, edges and change-points: If the data form a se-
quence of observation then it is possible to constrain the
clustering so that only adjacent things are permitted in
the same cluster or segment. Between each pair of consec-
utive segments there exists a change-point. This marks the
boundary of the segments.

Coherent segments and fragments: These are names used in
this paper to indicate consecutive sections of a sequence,
whether formed by segmentation or clustering.
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