
Added Distributions for use in Clustering
(Mixture Modelling), Function Models,

Regression Trees, Segmentation, and mixed
Bayesian Networks in Inductive

Programming 1.2.

Lloyd Allison

Faculty of Information Technology,
Monash University, Clayton, Victoria, Australia 3800.

April 2008.

TR 2008/224

Abstract. Inductive programming is a machine learning paradigm com-
bining functional programming (FP) with the information theoretic crite-
rion, Minimum Message Length (MML). IP 1.2 now includes the Geomet-
ric and Poisson distributions over non-negative integers, and Student’s
t-Distribution over continuous values, as well as the Multinomial and
Normal (Gaussian) distributions from before. All of these can be used
with IP’s model-transformation operators, and structure-learning algo-
rithms including clustering (mixture-models), classification- (decision-)
trees and other regressions, and mixed Bayesian networks, provided only
that the types match between each corresponding component Model,
transformation, structured model, and variable – discrete, continuous,
sequence, multivariate, and so on.

Source code of IP 1.2 is at http://www.allisons.org/ll/FP/IP/ .

Keywords: Bayesian networks, classification, decision trees, function mod-
els, Gaussian, Geometric, Haskell, inductive inference, MDL, minimum
message length, MML, Multinomial, Poisson, regression, t-Distribution.

1 Introduction

Inductive Programming (IP) [2, 3] is a paradigm that allows the rapid creation
of succinct solutions to inductive inference problems in machine learning and
data mining. It takes advantage of the compositional properties of (i) Functional
Programming (FP), as represented by the programming language Haskell, and
(ii) the Minimum Message Length (MML) principle [21, 20], a Bayesian method
for inductive inference (data mining, machine learning).

IP has been used to learn various kinds of statistical models from given data
including multivariate mixture models (clustering), segmentation models [10],

2 Lloyd Allison

classification- (decision-), regression- and model-trees [3], time-series models,
and mixed Bayesian networks [4] over both discrete and continuous variables.
(In general a variable can be of an arbitrary type provided that a suitable Model
is created for it [2]. For example, sequences can be modelled by a Time-Series
model and sequences have been clustered in this way.)

Modules and classes have been somewhat reorganised in IP 1.2, and extra
probability distributions (Models) – the Geometric and Poisson distributions
over integers and Student’s t-Distribution over continuous values – have been
added to the previously implemented Multinomial and Normal (Gaussian) Mod-
els. All of these distributions can be used immediately with the algorithms for
learning structured models – mixture models (clustering), classification- (decision-
), regression- and model-trees and other Function Models (regressions), segmen-
tation models of Time-Series data, and Bayesian Networks over mixed discrete
and continuous data.

Student’s t-Distribution does not have a closed-form estimator. A small li-
brary of scientific and numerical functions is new to IP 1.2 to optimise the t’s
parameters, in the first instance, but it obviously has other uses and will be
expanded in future.

2 Background

For completeness, this section gives the obligatory brief introductions to Mini-
mum Message Length (MML) inference and to Inductive Programming (IP).

2.1 MML

Minimum Message Length (MML) [21, 20] is a Bayesian method of inference. It
builds on Bayes’s theorem [6] and on Shannon’s mathematical theory of com-
munication [18], hence ‘message’:

Pr(M&D) = Pr(M).Pr(D|M) = Pr(D).Pr(M|D)
msgLen(E) = -log(Pr(E))
msgLen(M&D) = msgLen(M)+msgLen(D|M) = msgLen(D)+msgLen(M|D)

where M is a model (theory, hypothesis, parameter estimate) of prior probability
Pr(M) over some data, D, and E is an event of probability Pr(E). MsgLen(E)
is the length of a message for E in an optimal code. The units are nits for
natural logs and bits for base 2 logs. MML is related to the later Minimum
Description Length (MDL) principle [16, 5] but differs from it, for example, by
preferring models that are fully parameterised, to appropriate precision. (MML
is not equivalent to MAP in general.)

MML imagines a transmitter sending a two-part message to a receiver. The
first part, of length msgLen(M), states a model which answers some inference
problem that must be solved. The second part, msgLen(D|M), states the data
encoded as if the answer, M, is true. Note that the receiver cannot decode the
second part without the first part. There is a trade-off between the complexity

Inductive Programming 1.2 3

of the model, M, and its fit to the data, D|M. The transmitter and receiver can
cooperate to design an efficient code but this can only be based on expected data.
Strict MML (SMML) relies on the design of a full optimal code book. Unfortu-
nately SMML is computationally infeasible for most inference problems [11] but
there are efficient and accurate MML approximations [20], notably MML87 [23],
for many useful problems and models. The MML87 approximation to the mes-
sage length for a model Mθ with a k-dimensional parameter θ is given by

msgLen(D, θ) = − log h(θ) +
1
2

log |F (θ)|+ k

2
log κk︸ ︷︷ ︸

msgLen(θ)

+
k

2
− logPr(D|θ)︸ ︷︷ ︸
msglen(D|θ)

(1)

where h is the prior on θ, F (θ) is the Fisher information matrix, |...| takes the
determinant, and κk is a lattice constant for k dimensions [9], k1 = 1/12, k2 =
3/(36

√
3), k3 = 19/(190 ∗ 21/3), ..., k∞ = 1/(2πe).

MML is a natural compositional criterion because the complexity of data,
models and sub-models are all measured in the same units. Inductive Program-
ming exploits this to build structured models from component models. It also
uses transformation operators on models, much as functional programming uses
high-order functions to transform functions.

2.2 Inductive Programming

Inductive Programming (IP) provides a library of statistical models, estimators,
and operators on these.

Initially, IP was created in response to a quite natural problem in research:
Much research in MML, and in machine learning in general, takes the form of
creating a new kind of statistical model, plus a learner (estimator), for a fairly
specific problem such is unsupervised or supervised classification, or time-series
prediction. Often it is carried out by a PhD student who creates a prototype
(flaky) implementation of the new model, compares it to earlier competitive
models, gets the degree, and departs for fresh fields. Gradually a collection builds
up of incompatible, hard to maintain programs. A unified tool-kit, such as IP,
can reduce this problem. As an elementary example, there is a single implemen-
tation of the Normal (Gaussian) distribution in IP and it is used by unsupervised
classification, regression-trees and anything else that needs the Normal distribu-
tion.

In attempting to correct this initial ‘problem in research,’ IP seeks to create
a uniform framework for as much of machine learning as possible. This raises
the question of just what are the general tasks, and tools, in machine learning?
What are their properties and operators and, crucially, what are their types and
type-classes? The polymorphic type system of Haskell [15] has been useful for
examining this question and, as part of a first-cut at an answer, there are four
type-classes [2, 3]; see figure 1.

SuperModel is the super-class of the currently three populated classes of sta-
tistical model: Model, FunctionModel and TimeSeries. Every statistical model,

4 Lloyd Allison

class ... SuperModel sMdl where

prior :: sMdl -> Probability

msg1 :: sMdl -> MessageLength

mixture :: ... mx sMdl -> sMdl

...

class Model mdl where

pr :: (mdl dataSpace) -> dataSpace -> Probability

nlPr :: (mdl dataSpace) -> dataSpace -> MessageLength

msg :: ... (mdl dataSpace) -> [dataSpace] -> MessageLength

msg2 :: (mdl dataSpace) -> [dataSpace] -> MessageLength

...

class FunctionModel fm where

condModel :: (fm inSpace opSpace) -> inSpace -> ModelType opSpace

...

class TimeSeries tsm where

predictors :: (tsm dataSpace) -> [dataSpace] -> [ModelType dataSpace]

...

‘...’ stands for omitted details, ‘::’ for ‘has type’,

‘[t]’ for ‘list of a type t’, and ‘->’ for function type.

Fig. 1. Classes of Statistical Model.

m, has a prior probability, equivalently, a complexity, that is the first-part of
a message, msg1 m. A mixture can also be formed of two or more statistical
models of the same type.

The main duty of a Model, m, over some data-space (type) is to give the
probability, pr m x, equivalently the negative log probability, nlPr m x, of a
datum, x, in the data-space. Derived from this is the second-part message length,
msg2 m xs, of a data-set, xs, that is of a list, [...], of data from the data-space.
Both message parts together give the total message length, msg m xs.

A FunctionModel has an input-space and an output-space and returns a
Model of the output-space conditional, condModel, upon a value from the input-
space.

A TimeSeries statistical model gives a series of predictors, each one being a
Model for the next element in a data-series, depending on the context of previous
values in the sequence up to that point.

In Haskell, a value has a type and a type can be an instance of one or
more type-classes. For example, 3.14 can have the type Double and Double
is an instance of various classes including Num (numerical), and Show (print-
able). A Bayesian network [13] learned from multivariate observational data is
a directed acyclic graph where each node corresponds to a variable and each
edge shows a child’s dependency on a parent. In IP, a Bayesian network has
been represented as an ordering of the variables plus a FunctionModel for each

Inductive Programming 1.2 5

variable conditional upon some or all of its predecessors in the sequence. A
conditional probability table (CPT), that is a FiniteFunctionModel, is often
used for parent-child dependencies on discrete variables but any FunctionModel
(over the right input and output spaces) can be used [14]. A classification-tree
has the type CTreeType ip op which actually includes regression-trees when op
is continuous [3]. CTreeType is an instance of class FunctionModel and so can
be used for parent-child dependencies, as first suggested by Friedman and Gold-
szmidt [12] (subsequently by Comley and Dowe [8]). The output Model of each
FunctionModel must match the type of its output-space variable; the Multino-
mial distribution is typically used for a discrete variable and any appropriate
continuous distribution for a continuous variable [4].

3 Inductive Programming 1.2 (IP1.2)

IP previously included the Multinomial and Normal (Gaussian) distributions
(Models). New to IP 1.2 are the Geometric (§3.2) and Poisson (§3.1) distri-
butions, both defined for integers ≥ 0 and parameterised on their means, and
Student’s t-Distribution (§3.3) for continuous values. A small library of numeri-
cal/ scientific functions (§3.5) is also new. Finally, some file and module names
have been changed.

The Snob program [21] implements an MML Poisson distribution [20, 22]
where two variables are needed, one for a count and one for a duration; in
IP (§3.1) a single integer variable is modelled. The Geometric (§3.2) distribution
here follows [17] which examined selecting between a Poisson and Geometric,
and compared estimators for them.

3.1 Poisson

The Poisson’s probability function for an integer datum x ≥ 0 is

Pr(x|α) =
e−ααx

x!
(2)

The mean and variance are equal to α. The negative log likelihood, L, is

L = α− x logα+ log x!

so
dL

dα
= 1− x

α

Equating the derivative for n data, x1, ..., xn, to zero, we see that the maximum
likelihood estimator is

αML =
1
n

∑
xi

The second derivative of L is

∂2L

∂α2
=

x

α2

6 Lloyd Allison

Its expectation, the Fisher information, for n data is therefore

Fα =
nα

α2
=
n

α
(3)

A reasonable prior on α is

hA(α) =
1
A
e−α/A (4)

which has mean A. It is usually easy to come up with a safe value for A by
setting it to a “typical expected data value”, but if in doubt err towards making
A larger rather than smaller. The prior has little effect on the MML estimate of
α but it does affect the cost of stating the estimate.

Substituting the prior (4) and Fisher (3) into the message length equation (1),
and differentiating

d msgLen
d α

=
1
A

+ n−
∑
xi

α
− 1

2α

Setting this to zero gives the MML estimator

αMML =
∑
xi + 1/2
n+ 1/A

with uncertainty region √
12

FαMML

=

√
12αMML

n

3.2 Geometric

Given a coin where p = Pr(head), the number of tails thrown before the first
head is thrown is modelled by a Geometric distribution (often the head itself
is included, but not here). The distribution’s mean, µ, equals 1/p − 1, so p =
1/(µ + 1). It is convenient to re-parameterise the distribution on its mean. For
an integer datum x ≥ 0 we have

Pr(x|µ) =

(
µ

µ+1

)x

µ+ 1
(5)

L = − logPr(x|µ) = x(log(µ+ 1)− logµ) + log(µ+ 1)

The first derivative of L is

d L

d µ
= x

(
1

µ+ 1
− 1
µ

)
+

1
µ+ 1

So the maximum likelihood estimator for n data, x1, ..., xn, is

µML =
1
n

∑
xi

Inductive Programming 1.2 7

The second derivative of L is

∂2L

∂µ2
= x

(
1
µ2

− 1
(µ+ 1)2

)
− 1

(µ+ 1)2

which for n data has expectation, that is Fisher information,

Fµ =
n

µ(µ+ 1)

It is convenient to adopt the prior, equation (4), already used for the Poisson
distribution, partly because the two distributions are often competitors on a
given data-set and doing so puts them on an equal footing [17].

Substituting in the message length equation (1) and differentiating,

d msgLen
d µ

=
1
A

+
1

µ+ 1

(∑
xi + n− 1

2

)
− 1
µ

(∑
xi +

1
2

)
Equating this to zero gives a quadratic for µ

µ2

A
+ µ

(
1
A

+ n− 1
)
− 1

2
−
∑

xi = 0

Taking the admissible (+) solution of the quadratic gives the MML estimator

µMML =

(
1− n− 1

A
+

√
n2 +

1
A2

+ 1 +
2n
A
− 2n+

4
A

∑
xi

)
A

2

with uncertainty region √
12

FµMML

It is not immediately obvious that µMML does indeed tend to the mean for
larger and larger data-sets from the same source.

3.3 Student’s t-Distribution

Student’s t-Distribution [19] for a continuous datum x has the probability density
function

f(x|µ, σ, ν) =
Γ ν+1

2√
µνσΓ ν

2

{
1 +

(x− µ)2

νσ2

}−(ν+1)/2

ν is called the shape parameter. The mean of the distribution is undefined if
ν ≤ 1. The variance is σ2ν/(ν − 2), if ν > 2, otherwise it is undefined. If ν = 1
the t-Distribution is a Cauchy distribution, and if ν is large, say ≥ 30, it is very
close to the Normal (Gaussian) distribution, N(µ, σ).

The negative log likelihood, L, for a datum, x is

L =
1
2

log π+logΓ
ν

2
− logΓ

ν + 1
2

− ν

2
log ν−ν log σ+

ν + 1
2

log(νσ2 +(x−µ)2)

8 Lloyd Allison

The first derivatives with respect to the parameters are

∂ L

∂ µ
= −(ν + 1)

x− µ

νσ2 + (x− µ)2

∂ L

∂ σ
=
−ν
σ

+ ν(ν + 1)σ
1

νσ2 + (x− µ)2

∂ L

∂ ν
=

1
2
ψ
(ν

2

)
− 1

2
ψ

(
ν + 1

2

)
− 1

2
− 1

2
log ν − log σ

+
1
2

log(νσ2 + (x− µ)2) +
(ν + 1)σ2

2(νσ2 + (x− µ)2)

(Note that ψ and ψ1 are the first and second derivatives of the log Γ function,
also known as digamma and trigamma.) The three first derivatives of L, above,
give its gradient, ∇L, which is useful when it comes to searching for an estimate.

Turning to the second derivatives of L, first the terms for µ and σ,

∂2 L

∂ µ2
= (ν + 1)

(
1

νσ2 + (x− µ)2
− 2(x− µ)2

(νσ2 + (x− µ)2)2

)
which has expectation

F11 =
ν + 1

(ν + 3)σ2

∂2 L

∂ σ2
=

ν

σ2
+ ν(ν + 1)

(
1

νσ2 + (x− µ)2
− 2νσ2

(νσ2 + (x− µ)2)2

)
which has expectation

F22 =
2ν

(ν + 3)σ2

The off-diagonal second derivatives involving µ are all odd functions of the data
x− µ so their expectations are zero,

F12 = F21 = F13 = F31 = 0

The Fisher information, Fµσ, for n data and holding the shape, ν, constant is
therefore

Fµσ = F11F22n
2

As a sanity check, when ν grows large Fµσ tends to 2n2/σ4 which is also the
Fisher for the Normal distribution, N(µ, σ), with respect to µ and σ [23].

Next for the second derivatives involving ν,

∂2 L

∂ ν2
=

1
4
ψ1

(ν
2

)
− 1

4
ψ1

(
ν + 1

2

)
− 1

2ν
+

σ2

νσ2 + (x− µ)2
− (ν + 1)σ4

2(νσ2 + (x− µ)2)2

Inductive Programming 1.2 9

which has expectation

F33 =
1
4
ψ1

(ν
2

)
− 1

4
ψ1

(
ν + 1

2

)
− ν + 5

2ν(ν + 1)(ν + 3)

There is interaction between σ and ν,

∂2 L

∂σ∂ν
=

∂2 L

∂ν∂σ
= − 1

σ
+

(2ν + 1)σ
νσ2 + (x− µ)2

− ν(ν + 1)σ3

(νσ2 + (x− µ)2)2

which has expectation

F23 = F32 =
−2

σ(ν + 1)(ν + 3)

The Fisher information for n data, for all three parameters, Fµσν , is therefore

Fµσν = F11(F22F33 − F 2
23)n

3

which, after some rearranging, becomes

n3

σ4

{
ν(ν + 1)
2(ν + 3)2

(
ψ1

(ν
2

)
− ψ1

(
ν + 1

2

))
− 1

(ν + 1)(ν + 3)

}
agreeing with the equation in [1]. Note that logFµσν , the present instance of
logF in equation (1), is of the form

logFµσν = 3 log n− 4 log σ + log g(ν)

for an expression g.
There is no closed-form for the MML estimator (nor maximum likelihood

(ML)) for the t-Distribution so a numerical search is necessary. This has been
implemented, using IP’s small numerical library, to minimise the message length,
equation (1), subject to the constraints σ > 0, 1 ≤ ν ≤ 30, plus any extra ones
that an estimator might impose. The median of the data is a reasonable starting
point for µ, the standard deviation for σ, and 6 for ν (according to the grapevine).
The default prior is uniform for µ on some range, 1/σ normalised for σ on some
range, and uniform for ν on [1, 30] but, given the numerical search, virtually any
prior could be used instead. k3 is the relevant lattice constant (§2.1). On small
data-sets the MML estimator may select slightly larger values of σ and ν than
the ML estimator to make |F | smaller.

3.4 Distribution Implementations

To begin to use a new distribution (Model) in IP requires at least a function to
construct constant, fully parameterised Models.

To fit the distribution to data requires an estimator. An estimator is a func-
tion from a data-set (list) of data from the appropriate data-space (type) to a
Model over that data-space. Such an estimator may, for example, be passed as a

10 Lloyd Allison

parameter to the learner of “. . .-trees” [3] to model data from the tree’s output-
space, in its leaves, in which case we would learn a regression-tree. (Often there is
a function of extra parameters, for example to control the prior, which produces
an estimator.)

A weighted estimator, for weighted data, is needed to use the distribution in
mixture models (clustering). Note that the weights may be fractional. This is
because a datum may belong partly to two or more components of the mixture.

Constructors, and weighted and unweighted estimators have been imple-
mented for the Poisson and Geometric distributions, and Student’s t-Distribution.
Module T also includes “extras” to do with the t-Distribution, such as the full
Fisher information matrix, which may be useful to implement special cases and
other estimators. For example, when holding the shape, ν, constant the reduced
Fisher can be got by dropping the last row and column (dropRowCol) of the full
Fisher. When setting µ = 0 for a linear regression, the first row and column can
be dropped.

3.5 Numerical Functions

A small numerical library, module Sci, was implemented in Haskell mainly to
support the t-Distribution in the first instance. It makes use of Haskell’s Array
library [15]. There are various efforts by others to interface Haskell to “serious”
numerical libraries implemented in C, for example. However the t’s needs are
quite modest and the present course of action was taken (i) to see how it would
work out (interesting), and (ii) to keep IP self-contained, for now. The efficiency
question for numerical and array algorithms in functional programming has been
well examined [7] but is not a major concern in this instance. As far as writing
numerical Haskell code goes, there is obvious potential to exploit features such
as infinite series (lazy lists) and polymorphism over the numerical (Num) types.

4 Conclusions

Inductive programming (IP) uses the compositional abilities of functional pro-
gramming (Haskell) and Minimum Message Length (MML) inference. IP 1.2 (§3)
now includes the Poisson (§3.1) and Geometric (§3.2) probability distributions,
each defined on integers ≥ 0 and parameterised on the distribution mean, and
Student’s t-Distribution (§3.3) on continuous values.

A small numerical library (§3.5) is also included in IP 1.2 to support tasks
such as optimising a function of a small number of parameters, for example,
fitting a t-Distribution.

The Normal and Multinomial distributions were previously implemented,
as were learners for structured-models such as mixtures, classification-trees [3],
mixed Bayesian networks [4], and segmentation models [10] which can be used
with the new, and earlier, distributions.

Inductive Programming 1.2 11

References

1. Y. Agusta and D. Dowe. MML clustering of continuous-valued data using Gaussian
and t-distributions. 15th Australian Joint AI Conf., pages 143–154, 2002.

2. L. Allison. Types and classes of machine learning and data mining. 26th Aus-
tralasian Computer Science Conference (ACSC), pages 207–215, February 2003.

3. L. Allison. Models for machine learning and data mining in functional
programming. J. Functional Programming, pages 15–32, January 2005.
doi:10.1017/S0956796804005301.

4. L. Allison. A programming paradigm for machine learning with a case study
of Bayesian networks. 29th Australasian Computer Science Conference (ACSC),
pages 103–111, February 2006.

5. R. A. Baxter and J. J. Oliver. MDL and MML: Similarities and differences. Techni-
cal Report 94/207, Department of Computer Science, Monash University, January
1995.

6. T. Bayes. An essay towards solving a problem in the doctrine of chances. Phil.
Trans. of the Royal Soc. of London, 53:370–418, 1763. Reprinted in Biometrika
45(3/4), pp. 296–315, 1958.

7. M. M. T. Chakravarty and G. Keller. An approach to fast arrays in Haskell. 4th
Summer School and Workshop on Advanced Functional Programming, 2638:27–58,
2002.

8. J. Comley and D. Doew. General Bayesian networks and asymmetric languages.
2nd Hawaii Int. Conf. Statistics and Related Fields (HICS-2), June 2003.

9. J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, 1988. (See p.61).

10. M. B. Dale, L. Allison, and P. E. R. Dale. Segmentation and clustering as comple-
mentary sources of information. Acta Oecologica, 31(2):193–202, March 2007.

11. G. E. Farr and C. S. Wallace. The complexity of strict minimum message length
inference. BCS Computer J., 45(3):285–292, 2002.

12. N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure.
UAI’96, pages 252–262, 1996.

13. K. B. Korb and A. E. Nicholson. Bayesian Artificial Intelligence. Chapman and
Hall / CRC, 2004.

14. R. T. O’Donnell, L. Allison, and K. B. Korb. Learning hybrid Bayesian net-
works by MML. AI 2006: Advances in Artificial Intelligence, 4304:192–203, 2006.
doi:10.1007/11941439 23.

15. S. Peyton-Jones et al. Report on the programming language Haskell-98. 1999.
Available at http://www.haskell.org/.

16. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.
17. D. F. Schmidt and E. Makalic. MMLD inference of the Poisson and geometric

models. Technical Report 2008/220, Faculty of Information Technology, Monash
University, January 2008.

18. C. E. Shannon. A mathematical theory of communication. Bell Syst. Technical
Jrnl., 27:379–423 and 623–656, 1948.

19. Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908. (W. S. Gosset
writing as Student).

20. C. S. Wallace. Statistical and Inductive Inference by Minimum Message Length.
Springer-Verlag, 2005. isbn:038723795X.

21. C. S. Wallace and D. M. Boulton. An information measure for classification. BCS
Comput. J., 11(2):185–194, 1968.

12 Lloyd Allison

22. C. S. Wallace and D. Dowe. MML mixture modelling of multi-state, Poisson, von
Mises circular and Gaussian distributions. Proc. 28th Symposium on the Interface,
pages 608–613, 1997.

23. C. S. Wallace and P. R. Freeman. Estimation and inference by compact coding.
J. Royal Statistical Society series B., 49(3):240–265, 1987.

