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Abstract—Proteins are biomolecules of life. They fold into
a great variety of three-dimensional (3D) shapes. Underlying
these folding patterns are many recurrent structural fragments
or building blocks (analogous to ‘LEGO R© bricks’). This paper
reports an innovative statistical inference approach to discover
a comprehensive dictionary of protein structural building blocks
from a large corpus of experimentally determined protein struc-
tures. Our approach is built on the Bayesian and information-
theoretic criterion of minimum message length. To the best of our
knowledge, this work is the first systematic and rigorous treat-
ment of a very important data mining problem that arises in the
cross-disciplinary area of structural bioinformatics. The quality of
the dictionary we find is demonstrated by its explanatory power
– any protein within the corpus of known 3D structures can
be dissected into successive regions assigned to fragments from
this dictionary. This induces a novel one-dimensional represen-
tation of three-dimensional protein folding patterns, suitable for
application of the rich repertoire of character-string processing
algorithms, for rapid identification of folding patterns of newly-
determined structures. This paper presents the details of the
methodology used to infer the dictionary of building blocks, and is
supported by illustrative examples to demonstrate its effectiveness
and utility.

I. INTRODUCTION

Proteins are molecules central to life. They are responsible
for biological and cellular functions in all organisms. Each
protein folds into a three-dimensional (3D) shape, determined
by the intrinsic properties of its sequence or chain of amino
acid residues. Among the major triumphs of modern science
are the techniques to experimentally determine the 3D struc-
tures of proteins at atomic resolution. Worldwide structure
determination efforts have resulted in a fast growing public
database, the protein data bank (wwPDB) [1]. Currently ww-
PDB contains atomic coordinates of 91, 550 experimentally
solved protein structures, whose size is doubling every five
years. This database provides a rich source of structural and
architechtural information for knowledge discovery and data
mining applications that contribute to the advances made in
life sciences in medicine.

Understanding the architectural principles of protein 3D
structure is fundamental to biological research. It is well
known that protein folding patterns contain recurrent structural
themes, commonly helices and pleated sheets [2], [3]. However
the identification of a canonical set of building blocks (analo-
gous to LEGO R© bricks) of protein structures still remains an
important open questions in biology.

Previous investigations have sought to identify a dictionary
of fragments as building blocks of protein structures [4]–[10].
(By fragment we mean a contiguous region within the folding
pattern of a protein – this can be viewed as a 3D analogue of
a 1D substring.) However, these approaches largely rely on ad
hoc clustering of short fragments of some fixed-length, usually
4 to 10 amino acid residues long. The restriction of generating
fixed-length fragment libraries is an artificial constraint, mainly
employed to work around the difficulty of the search problem
that manifests when trying to identify recurring fragments of
arbitrary length. Thus, the question, what is the canonical
dictionary of fragments (of arbitrary lengths) of which all
proteins are made, remains fundamentally unsolved.

This paper addresses the above question by framing it
as as a statistical inference problem. Our approach relies
on the Bayesian method of minimum message length infer-
ence [11], [12], where the optimal fragment dictionary is
defined objectively as the one which permits the most concise
explanation (or technically, shortest lossless encoding) of the
coordinates of a collection of source protein structures. To
the best of our knowledge, our work is the first objective
and systematic treatment of this important question, addressed
using a statistically rigorous approach which investigates the
compressibility of protein coordinate data.

We mine these building blocks from a collection of 8992
experimentally determined protein structures, whose coordi-
nates were solved at atomic resolution, and available from
the wwPDB [1]. These source structures are dissimilar in
amino acid sequence to avoid experimental and selection bias
observed within the wwPDB. In other words, the collection
we use is comprehensive and unbiased, representative of all
known protein folding patterns in the wwPDB.

Our approach discovered 1711 fragments or building
blocks, ranging in length from 4 to 31 amino acid residues.
This dictionary allows the efficient, lossless representation (or
encoding) of any given protein structure. For a particular
protein structure, the optimal lossless encoding contains a
dissection (or segmentation) – that is, a designation of suc-
cessive non-overlapping regions in the protein structures that
match the assigned dictionary fragments – and a statement of
spatial deviations (or corrections) that should be applied to the
coordinates of each assigned dictionary fragment so that the
coordinates corresponding to each region in the actual structure
can be recovered losslessly. We note that the regions that do
not efficiently match any dictionary fragment are assigned to
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a ‘null model’; in these cases, the spatial deviations bear the
entire weight of the description – this is tantamount to stating
the coordinates of the region in the source structure raw (or
as is).

The organization of the paper is as follows. Section II gives
a brief introduction to the minimum message length criterion.
Section III provides the foundations of the dictionary inference
problem using the MML framework. This involves designing
transparent communication processes, developing lossless en-
coding strategies, and evolving efficient search algorithms. The
details of these encoding schemes are available in the longer
version of the paper available from the arχiv preprint server:
refer http://arxiv.org/abs/1310.1462. The search strategy to find
the optimal dictionary is described in Section IV. We conclude
this paper with Section V providing various results including
illustrative examples of the effectiveness and the utility of the
dictionary we discover.

II. MINIMUM MESSAGE LENGTH FRAMEWORK

Minimum Message Length (MML) [11], [12] is a hy-
pothesis (or model) selection paradigm which links statistical
inference with information theory and data compression.

MML is a Bayesian method of inference. Formally, let
E denote a mass of observed data (or evidence) and H a
hypothesis on the data. From Bayes’s theorem [13] we have:
P (H & E) = P (H) × P (E|H) = P (E) × P (H|E), where
P (H) is the prior probability of hypothesis H , P (E) is
the prior probability of data E, P (H|E) is the posterior
probability of H given E, and P (E|H) is the likelihood.

In the Bayesian framework, two competing hypotheses can
be compared using the ratios of their posterior probabilities:

P (H1|E)

P (H2|E)
=

P (H1)P (E|H1)

P (H2)P (E|H2)

Usually, the goal of inference is to select the hypothesis with
the highest posterior probability.

MML offers a complementary view of Bayesian inference
by linking the probability of an event with the message length
required to transmit (or communicate, explain, describe) it
losslessly. The mathematical theory of communication [14]
gives the relationship between the message length I(e) to
communicate an event e losslessly, and its probability P (e):
I(e) = − logP (e).1

Therefore, by applying Shannon’s insight to Bayese theo-
rem above, we get:

I(H & E) = I(H) + I(E|H) = I(E) + I(H|E)

Similarly, two competing hypotheses can be compared as:

I(H1|E)− I(H2|E) = I(H1)+ I(E|H1)− I(H2)− I(E|H2)

It directly follows that the best hypothesis H∗ is the one for
which the expression I(H∗) + I(E|H∗) takes the minimum
value. (Notice, this is equivalent to maximizing the posterior
probability of the hypothesis given the data, P (H∗|E).)

1The unit of measurement of information depends on the base of the
logarithm; log2 gives message lengths measured in bits, while ln gives the
same measured in nits.

MML is best understood as a communication process
between an imaginary pair of transmitter (Alice) and receiver
(Bob) connected by a Shannon channel. Alice’s objective is
to send the data E using an explanation message in a form
that Bob can receive it losslessly. Alice and Bob agree on
a codebook containing general rules of communication com-
posed solely of common knowledge about typical, hypothetical
data. Anything that is not a part of the codebook must be
strictly transmitted as a part of the explanation message. If
Alice can find the best hypothesis, H∗ on the data, Bob will
receive a decodable explanation message most economically.

Alice sends the explanation message of E in two parts.
In the first part she transmits the best hypothesis, H∗, she
could find on the data E taking I(H∗) bits to communicate.
In the second, Alice transmits the details of the observed data
E not explained by the hypothesis H∗, taking I(E|H∗) bits to
communicate. (That is, this part correspond to the deviations
of the observed data E with respect to H∗). Notice that
MML inference gives a natural trade-off between hypothesis
complexity (I(H∗)) and quality of its fit to the data (I(E|H∗)).

III. INFERRING THE DICTIONARY USING THE MML
CRITERION

Preliminaries: Let C denote a collection of source protein
structures {P1,P2, · · · ,P|C|}. In this work we use a subset
of 8992 structures from the protein data bank after removing
amino acid sequence bias. That is, no two structures in the
collection C have a sequence similarity greater than 40%.

Any protein structure P is represented as an ordered list
of (x, y, z) coordinates of its alpha Carbon (Cα) atoms along
the protein backbone, denoted here as P = {p1, · · · , p|P|}. All

protein coordinates are defined in Angstrom units (1Å= 10−10

meters.)

Let D = {Q1,Q2, · · · ,Q|D|} denote a dictionary of frag-
ments. Each dictionary element Q = {q1, · · · , q|Q|} ∈ D is a
substructural fragment (i.e., a list of coordinates corresponding
to a consecutive region) derived from some P ∈ C, of arbitrary
length (|Q| < |P|).

We note that each (x, y, z) comes specified (in the protein
data bank) to 3 positions after the decimal place. Since we
are dealing with inference based on lossless compression, we
denote ε = 0.001 as a parameter that specifies the accuracy to
which coordinate data should be stated.

Rationalizing this problem in the MML framework: In this
work, any dictionary D of fragments is a hypothesis of building
blocks on a collection of structures C, with its observed coor-
dinates acting as evidence for inference. Therefore, using the
information-theoretic restatement of Bayes’s theorem describe
in Section II, we get:

I(D & C) = I(D) + I(C|D). (1)

Rationalizing Equation 1 as a communication process be-
tween Alice and Bob, the measure of quality of any proposed
dictionary of substructures is the total length of the explanation
message that Alice transmits to Bob so that all the coordinates
in the collection of source structures are received losslessly.
Given that even unrelated proteins contain common, recurrent
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fragments (or building blocks), Alice and Bob could reason-
ably hypothesize that they could apply this observation to
transmit the coordinates of various structures more concisely,
by using the dictionary of building blocks as the basis of
communication. It is intuitive to see that the better a dictionary
of fragments in terms of how well they describe (i.e., fit) the
observed coordinates, the more economical is the description
of the source structures in the collection.

To be useful for illuminating common building blocks over
all proteins, the dictionary must be the same for all structures;
that is, the dictionary does not change regardless of an individ-
ual structure that is being transmitted. Before transmitting the
coordinates of the collection, Alice first encodes and sends Bob
the canonical dictionary of fragments (taking I(D) bits). With
this information, Bob has a dictionary of substructures but
not the coordinates of the source structures in the collection.
Note again that Alice needs to send the dictionary only once
(as a header (or first part) of the total explanation message):
she need not restate it as part of the subsequent encodings of
coordinates of particular protein structures being transmitted.
Each subsequent message consists of the segmentation, that
is, the optimal assignment of successive regions in a protein
structure to dictionary fragments, plus the corrections (or
vector deviations) required because each region in the source
protein deviates from its assigned dictionary element. This
takes I(C|D) bits.

In proposing a dictionary Alice and Bob face a tradeoff.
They could use a large, all-encompassing fragment dictionary
whose elements fit regions of proteins very well, leaving only
small deviations in the assigned regions of the proteins to
be described. In this case the explanation message length for
each protein would be dominated by the explanation cost of
the dictionary and the assignment of dictionary fragments to
regions, because a large dictionary requires a larger message
to explain itself and to nominate a dictionary element. Alter-
natively, they could choose a small dictionary, in which case
the message length would be dominated by the transmission
of the corrections (vector deviations). As described in Section
II, the MML criterion provides an objective tradeoff between
the dictionary complexity and its fit with the coordinate data
observed in the collection.

Optimality criterion: The optimal dictionary involves finding
a dictionary of fragments that minimizes the total message
length equation shown in Equation 1. To achieve this involves
the following criteria:

1) Assume some dictionary D is given (containing arbi-
trary number of fragments, each of arbitrary length).
According to the MML framework, the optimal en-
coding of a particular protein structure P using the
specified dictionary D is defined as the combination,
of minimal encoding length, of assignments of suc-
cessive non-overlapping regions in P to fragments
in D, plus statements of spatial deviations relative
to each assigned fragment per region to recover the
observed coordinates in P losslessly.

2) Next, given the above method to optimally encode
a particular protein using a specified dictionary, the
optimal encoding of a collection of protein structures
C, all using the same fixed dictionary D, requires the

one-off statement of the dictionary D (as a header
to the subsequent explanation message), plus the
optimal encodings of each individual protein Pi ∈ C
using the method in Step 1.

3) Finally, given the method to optimal encode a collec-
tion of proteins in Step 2, an optimal dictionary for
the collection of protein structures can be objectively
defined as the one for which the one-off specification
cost of the dictionary D, plus the sum of the optimal
encodings of all the proteins Pi ∈ C, yields the
shortest explanation message.

(Refer http://arxiv.org/abs/1310.1462 for details of these steps.)

IV. THE SEARCH FOR THE OPTIMAL DICTIONARY

Equation 1 provides a rigorous objective to search for
the dictionary of fragments building blocks of protein three-
dimensional structures. It follows that an optimal dictionary for
a collection of protein structures is one for which the statement
of the dictionary, plus the sum of the optimal encodings of all
the proteins in the set, is the shortest. That is, the objective of
this work is to find a D∗ such that:

I(D∗ & C) = min
∀D

I(D & C) bits. (2)

Clearly, any fragment (of arbitrary size) from within any
protein in the collection is a potential candidate for the
dictionary. Therefore searching for the best dictionary leads
to a very large optimization problem. Since the problem is
computational intractable to find a provably optimal dictionary,
we designed a simulated annealing algorithm in order to evolve
a dictionary that iteratively converges to the best dictionary
defined by the Equation 2.

Simulated Annealing is an heuristic approach which has
an analogy with cooling of solids. Here, we consider each
possible dictionary (of arbitrary number of fragments) as being
analogous to some state of a physical system. The message
length of transmitting a collection of structures using any
dictionary given by Equation 1 is analogous to the internal
energy of the physical system in that state.

The method starts with an empty dictionary. In this state,
each protein in the collection is transmitted raw, as a random
coil using the null model. The strategy involves iteratively
perturbing the dictionary from this initial empty state to a state
where the total message length objective is minimized.

A. Perturbations

At each step the current dictionary is perturbed randomly
(which is akin to sampling some new nearby dictionary state).

The choice of moving to the new state or remaining in the
current one is decided probabilistically. Specifically, at each
iteration, our method employs one of the following randomly
chosen perturbations:

Add: Append to the current dictionary a new fragment.
This fragment is from a randomly chosen protein
from the collection, of random length.

1093



(a) (b) (c) (d)

Fig. 1. Four fragments chosen from our dictionary our approach discovered. (a) 1 2
3

turns of three-fold β-helix of length 31 residues. It occurs 26 times in our
collection. See wwPDB 2IC7 for one such instance. (b) An exotic β-hairpin of length 29 residues. This occurs 20 times in the collection. See wwPDB 1UJU
for one such instance. (c) A long β-hairpin of length 22 residues with 47 occurrences. See wwPDB 1JO8 for one such instance. (d) 1 turn of four-fold β-helix
of length 21, which occurs 19 times in the collection.

Resi Model RMSD (Å) Resi Model RMSD (Å)
2 - 6 m1096 0.12 78 - 82 m1415 0.14

6 - 10 m1195 0.21 82 - 85 m1623 0.07
10 - 13 m1595 0.24 85 - 89 m1083 0.20
13 - 22 m0231 0.16 89 - 92 m1706 0.03
22 - 32 m0159 0.18 92 - 95 m1611 0.06
32 - 37 m0874 0.27 95 - 100 m0967 0.53
37 - 41 m1202 0.24 100 - 103 m1571 0.17
41 - 45 m1246 0.18 103 - 115 m0054 0.12
45 - 49 m1323 0.17 115 - 119 m1499 0.19
49 - 55 m0502 0.19 119 - 123 m1480 0.21
55 - 60 m0930 0.28 123 - 128 m0769 0.29
60 - 63 m1685 0.07 128 - 133 m0750 0.32
63 - 67 m1306 0.26 133 - 141 m0281 0.12
67 - 71 m1194 0.16 141 - 148 m0426 0.19
71 - 78 m0423 0.12

Fig. 2. Dissection of the structure of flavodoxin from Desulfovibrio vulgaris (wwPDB entry 1J8Q). Parent structure shown in cyan; successive dictionary
fragments in alternating red and green. Cofactor flavin mononucleotide (FMN) in ball-and-stick representation. Dissected regions are listed as a table below the
picture.

Remove:Remove a randomly chosen fragment from the
existing dictionary state.

Swap: Replace a randomly chosen fragment in the
current dictionary with another randomly chosen
fragment from the collection. This is equivalent
to the sequence of perturbations: ‘Remove’
followed by an ‘Add’.

Perturb length:Expand or shrink a randomly chosen fragment
from the current dictionary state by one residue,
at the randomly chosen end. (Expanding a previ-
ously chosen fragment is achieved by remember-
ing its locus – i.e., the fragment’s source protein
structure and its offset in the source. This allows
any existing fragment to be elongated by an
additional coordinate, based on the information
available in its source structure.)

B. Probability of acceptance or rejection of any perturbation

. Equation 1 gives the estimate of the negative logarithm
of the joint probability of a dictionary and a collection. In

Section II we have seen that the difference between the
message lengths using any two different hypotheses (here,
two dictionary states) gives the log-odds posterior ratio. This
implies, if the total message length using a perturbed dictionary
is k bits shorter (conversely, longer) than the current state, then
the perturbed dictionary is 2k times more likely (conversely,
unlikely) than the perturbed state.

The simulated annealing heuristic starts with a high (time-
varying) parameter t (after temperature). Let Icurrent and
Iperturbed be the total message lengths using the current and
perturbed states of a dictionary. During any iteration, if ΔI ≡
(Icurrent − Iperturbed) < 0, the perturbed state is immediately
accepted as the new current state, and the procedure continued
Otherwise, the perturbed state is accepted with a probability

of 1/2
ΔI
t .

C. Cooling schedule

For simulated annealing algorithms, the variation of the
temperature parameter T controls the evolution of the dic-
tionary states. We set T to a high 10, 000 at the start. The
parameter T decays at a constant rate of 0.88. For each value of
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t between 10, 000 and 10, we carry out 10, 000 perturbations,
while for value of T less than 10, we carry out 100, 000
perturbations to the dictionary. The stopping criterion is when
the number of iterations reaches 2 million iterations (which
occurs at t = 0.246).

D. Implementation:

A program to optimally encode a given collection of
structures and then search for the best dictionary using sim-
ulated annealing was implemented in the C++ programming
language. Message Passing Interface (MPI) was used to par-
allelize this program to run on a large computational cluster.

A MapReduce model was used to distribute the encoding
tasks on the large cluster. In this model, a master node accepts
a collection of protein structures as input and evenly divides
them into smaller subsets of structures, where each subset
is distributed to worker nodes. For every perturbation of a
current dictionary state, each worker node computes the sum of
message lengths to optimally encode each of the structures in
its allocated subset. The worker node then returns the message
length back to the master node, which collects all the message
lengths and combines them to compute the total message
length to encode all the structures in the given collection using
the current state of the dictionary.

V. RESULTS

The work resulted in a dictionary of 1711 fragments
ranging in length from 4 to 31 amino acids. This dictionary
was used to dissect the entire collection of 8992 source
structures. The average root-mean-square (r.m.s.) deviation of
orthogonal superposition of the dictionary fragments to the
assigned regions is 0.29 Å. (Note, this does not include the
separate statement and application of deviations which is part
of the transmitted message, which would reduce 0.29 Å to
0.) The average, over all proteins in the set, of the maximum
r.m.s. deviation of any model from all regions it encodes, is
1.23 Å. In Fig. 1 shows the visualization of four fragments
chosen from the dictionary we discovered, of lengths 31,
29, 22 and 21 respectively. Previous methods, due to the
length constraint (see Section I), are unable to detect recurrent
fragments this long.

Figure 2 shows the optimal dissection into dictionary frag-
ments of the structure of flavodoxin from Desulfovibrio vul-
garis (wwPDB entry 1J8Q, solved at 1.35 Å resolution [15].)
To encode losslessly the flavodoxin structure, the dissection
would be accompanied by the vector deviations of the Cα

atoms of flavodoxin from the assigned canonical dictionary
fragments. Noteworthy properties of the dissection in this
example include:

1) The fits of the individual fragments of the dictionary
to the structure are quite precise in almost all cases.
The deviations are of the order of only tenths of an Å.
(The maximum r.m.s.d. between the coordinates of a
region in the protein and the assigned model is 0.53
Å; this occurs only once. All other r.m.s.d. values are
≤ 0.32 Å.)

2) Here the dictionary fragments account for the entire
structure. No regions of the structure need be encoded
as a random coil; that is, using the null model.

TABLE I. CLUSTERING OF MODELS IN THE IDENTIFIED DICTIONARY

Class Size Code Description
1 616 e short extended regions

2 301 t short non-hairpin turns (some β−bulges)

3 4 t short non-hairpin turns

4 325 h short helices

5 164 h short helices

6 167 E extended regions (some with hooks at end)

7 6 E extended regions (some curved)

8 13 T non-hairpin turns (some β−bulges)

9 50 b shorter β−hairpin

10 30 B β−hairpins

11 3 B β−hairpins, unequal arms (‘shepherd’s crook’)

12 1 B β−hairpins, unequal arms (‘shepherd’s crook’)

13 3 H irregular alpha helix (plus Cα-only)

14 17 H long alpha helices

15 2 Ω long wide loops (Ω loop)

16 1 Ω long wide loops (Ω loop)

17 2 Ω long wide loops (Ω loop)

18 1 C double β−hairpin (‘paper clip’)

19 1 B long twisted β−hairpins

20 2 Ω helix-strand-helix-strand / wide (Ω) loops

21 1 3 1 2
3 turns of three-fold β−helix

22 1 4 1 turn of four-fold (β−helix)

3) The range of lengths of the dictionary fragments
appearing in the dissection of flavodoxin is from 4
to 13. Some of the segments correspond to individual
fragments of secondary structure – helices and strands
of sheets. Others correspond to N- or C-terminal parts
of secondary structures, plus parts of the loops either
preceding or succeeding them.

4) The sequence of dictionary fragments provides a
one-dimensional representation of the protein folding
pattern.

Clustering of the dictionary fragments: To further rationalize
the 1711 dictionary fragments, we clustered the dictionary
fragments into coarse structural classes with the UPGMA
method [16] using the Mahalanobis distance [17] computed
from the following characterising properties:

1) the number of backbone hydrogen bonds between
residues separated by 4 in the sequence (to group
helices which demonstrate this periodicity),

2) the distance between the Cα atoms of N- and
C-terminal residues,

3) the cosine of the angle between the Cα atom of
the N-terminal residue, the Cα atom of the middle
residue (or, for fragments containing even numbers
of residues, the average position of the Cα atoms of
the two middle residues),

4) the r.m.s. deviation of a fit of the Cα atoms to a
straight line, and

5) the average value of the cosine of the dot products of
C→O vectors of successive residues. Table I shows
the clusters, and suggested class codes.
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One-dimensional representation of protein folds. We consider
as a case study the assignment of fragments to clusters which
reveals structural patterns in Drosophila lebanonensis alcohol
dehydrogenase (wwPDB code 1SBY).

The details of the dissection of amino acid residues 1-
183 of 1SBY into dictionary fragments are available in the
longer version of our paper available from http://arxiv.org/abs/
1310.1462. The sequence of class symbols derived from the
dissection, converted to upper case to suppress the distinction
between short and long versions of the same substructure,
affords a more perspicuous representation of this dissection:

EETTHTEEHEETHHEEETHHTTEEHTHHTEE

(E = strand, H = helix, T = non-hairpin turn (Table 1).)

This is an instance of the regular expression:

(E+T+H+T+E+HE*TH+T*E+){2}

This sequence from the dissection provides a concise one-
dimensional representation of the folding pattern. It captures
the duplication of the two β−α−β−α−β substructures (and
the points of insertion of non-pattern elements) but not their
symmetrical spatial disposition. Nevertheless, the dissection
provides a faithful signature of the NAD-binding domain
folding pattern [18].

The rich repertoire of algorithms on character strings is
applicable. For example, the string could be used to design
regular expressions for probing collections for similar struc-
tures.

More generally, standard regular-expression-matching al-
gorithms permit application of the linear representations to
identify common folding patterns in a set of structures, or,
specifically, to classify a newly-determined structure, as for
example in SCOP [19] and CATH [20]. The representation
can also identify variations and deviations from standard
folding patterns in known families. For instance, some NAD-
binding domains (including Drosophila lebanonensis alcohol
dehydrogenase) contain extra helices and/or hairpins [21] and
this would be revealed by a ‘sequence’ alignment of the
dissections of members of this family.

VI. CONCLUSION

This work introduces a novel method to infer the dictionary
of building blocks of protein structures. This work fall squarely
into one of the most important cross-disciplinary areas of
modern science, where biology and computing meet. The
approach described in this paper is a successful demonstration
of rigorous statistical inference applied to an important data
mining problem in structural Bioinformatics. The knowledge
of this dictionary direct us to a number of avenues for further
research. These include, for instance, straightforward gener-
alisations, such as inclusion of backbone and even sidechain
atoms. The exploration of the linear representation of folding
patterns, and its potential correlation with sequence signals is
a particularly attractive challenge. Working out the grammar
associated with sequences of classes of dictionary fragments
can illuminate different levels of folding architectures. The
dictionary fragments themselves might well be applicable in

approaches to predictions of protein structure, the holy grail
of bioinformatics.
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